Lack of association between pandemic chilblains and SARS-CoV-2 infection
An increased incidence of chilblains has been observed during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic and attributed to viral infection. Direct evidence of this relationship has been limited, however, as most cases do not have molecular evidence of prior SARS-CoV-2...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 119; no. 9; pp. 1 - 9 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An increased incidence of chilblains has been observed during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic and attributed to viral infection. Direct evidence of this relationship has been limited, however, as most cases do not have molecular evidence of prior SARS-CoV-2 infection with PCR or antibodies. We enrolled a cohort of 23 patients who were diagnosed and managed as having SARS-CoV-2–associated skin eruptions (including 21 pandemic chilblains [PC]) during the first wave of the pandemic in Connecticut. Antibody responses were determined through endpoint titration enzyme-linked immunosorbent assay and serum epitope repertoire analysis. T cell responses to SARS-CoV-2 were assessed by T cell receptor sequencing and in vitro SARS-CoV-2 antigen-specific peptide stimulation assays. Immunohistochemical and PCR studies of PC biopsies and tissue microarrays for evidence of SARS-CoV-2 were performed. Among patients diagnosed and managed as “covid toes” during the pandemic, we find a percentage of prior SARS-CoV-2 infection (9.5%) that approximates background seroprevalence (8.5%) at the time. Immunohistochemistry studies suggest that SARS-CoV-2 staining in PC biopsies may not be from SARS-CoV-2. Our results do not support SARS-CoV-2 as the causative agent of pandemic chilblains; however, our study does not exclude the possibility of SARS-CoV-2 seronegative abortive infections. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 1A complete list of the Yale IMPACT Team can be found in SI Appendix. Contributed by Akiko Iwasaki; received December 6, 2021; accepted January 5, 2022; reviewed by Shawn Demerhi and Elizabeth Grice Author contributions: J.R.G., S.O., A.I.K., A.A., and A.I. designed research; J.R.G., A.J.L., C.J.K., M.E., C.L., P.W., J.K., P.L., T.M., J.J., E.W., Y.I.T., N.U., C.M., D.M., R.A., J.M., K.K., A.M.R., and I.Y. performed research; A.J.L., C.J.K., M.E., R.Q.K., R.P., R.A., J.M., W.D., J.S., A.M.R., I.Y., and A.A. contributed new reagents/analytic tools; J.R.G., M.E., C.L., P.W., J.K., P.L., T.M., J.J., E.W., K.K., J.S., A.M.R., S.O., A.I.K., A.A., and A.I. analyzed data; Y.I.T. processed, stored, and distributed biospecimens; A.I. supervised the project and established collaborations; and J.R.G. and A.I. wrote the paper. |
ISSN: | 0027-8424 1091-6490 1091-6490 |
DOI: | 10.1073/pnas.2122090119 |