A high-temperature and high-pressure cell for in situ visualization of reaction processes by neutron imaging
This study developed a high-temperature and high-pressure (HTHP) cell for in situ neutron imaging of hydrothermal reactions. The cell’s maximum temperature and pressure were 500 °C and 50 MPa, respectively, and its vessel for observing reactions comprised SUS316 stainless steel. Neutron transmission...
Saved in:
Published in | Review of Scientific Instruments Vol. 94; no. 8 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
AIP Publishing
01.08.2023
American Institute of Physics |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This study developed a high-temperature and high-pressure (HTHP) cell for in situ neutron imaging of hydrothermal reactions. The cell’s maximum temperature and pressure were 500 °C and 50 MPa, respectively, and its vessel for observing reactions comprised SUS316 stainless steel. Neutron transmission images were obtained to observe the behavior of sub- and supercritical water and the decomposition of two plastics (polypropylene and polyethylene) at HTHP. The images showed that water’s density and phase changed with temperature and pressure, affecting neutron transmission (and thus image brightness). The plastics began to melt and change shape at 150–200 °C, and they decomposed at 500 °C and 20 MPa. This study provides a basis for future research using the HTHP cell to examine various reactions such as the decomposition of biomass samples, the reforming of heavy oil, and the synthesis of nano-materials using sub- and supercritical water. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0034-6748 1089-7623 1089-7623 |
DOI: | 10.1063/5.0159685 |