Functional connectivity gradients of the insula to different cerebral systems
The diverse functional roles of the insula may emerge from its heavy connectivity to an extensive network of cortical and subcortical areas. Despite several previous attempts to investigate the hierarchical organization of the insula by applying the recently developed gradient approach to insula‐to‐...
Saved in:
Published in | Human brain mapping Vol. 44; no. 2; pp. 790 - 800 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The diverse functional roles of the insula may emerge from its heavy connectivity to an extensive network of cortical and subcortical areas. Despite several previous attempts to investigate the hierarchical organization of the insula by applying the recently developed gradient approach to insula‐to‐whole brain connectivity data, little is known about whether and how there is variability across connectivity gradients of the insula to different cerebral systems. Resting‐state functional MRI data from 793 healthy subjects were used to discover and validate functional connectivity gradients of the insula, which were computed based on its voxel‐wise functional connectivity profiles to distinct cerebral systems. We identified three primary patterns of functional connectivity gradients of the insula to distinct cerebral systems. The connectivity gradients to the higher‐order transmodal associative systems, including the prefrontal, posterior parietal, temporal cortices, and limbic lobule, showed a ventroanterior‐dorsal axis across the insula; those to the lower‐order unimodal primary systems, including the motor, somatosensory, and occipital cortices, displayed radiating transitions from dorsoanterior toward both ventroanterior and dorsoposterior parts of the insula; the connectivity gradient to the subcortical nuclei exhibited an organization along the anterior–posterior axis of the insula. Apart from complementing and extending previous literature on the heterogeneous connectivity patterns of insula subregions, the presented framework may offer ample opportunities to refine our understanding of the role of the insula in many brain disorders.
Resting‐state functional MRI data from 793 healthy subjects were used to discover and validate functional connectivity gradients of the insula, which were computed based on its voxel‐wise functional connectivity profiles to distinct cerebral systems. We identified three primary patterns of functional connectivity gradients of the insula to distinct cerebral systems. |
---|---|
Bibliography: | Funding information Rui Wang and Fan Mo contributed equally to this work. National Natural Science Foundation of China, Grant/Award Number: 82071905; Outstanding Youth Support Project of Anhui Province Universities, Grant/Award Number: gxyqZD2022026 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information National Natural Science Foundation of China, Grant/Award Number: 82071905; Outstanding Youth Support Project of Anhui Province Universities, Grant/Award Number: gxyqZD2022026 |
ISSN: | 1065-9471 1097-0193 1097-0193 |
DOI: | 10.1002/hbm.26099 |