Amylose in starch towards an understanding of biosynthesis, structure and function
Starch granules are composed of two distinct glucose polymers – amylose and amylopectin. Amylose constitutes 5–35% of most natural starches and has a major influence over starch properties in foods. Its synthesis and storage occurs within the semicrystalline amylopectin matrix of starch granules, th...
Saved in:
Published in | The New phytologist Vol. 228; no. 5; pp. 1490 - 1504 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
Wiley
01.12.2020
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Starch granules are composed of two distinct glucose polymers – amylose and amylopectin. Amylose constitutes 5–35% of most natural starches and has a major influence over starch properties in foods. Its synthesis and storage occurs within the semicrystalline amylopectin matrix of starch granules, this poses a great challenge for biochemical and structural analyses. However, the last two decades have seen vast progress in understanding amylose synthesis, including new insights into the action of GRANULE BOUND STARCH SYNTHASE (GBSS), the major glucosyltransferase that synthesises amylose, and the discovery of PROTEIN TARGETING TO STARCH1 (PTST1) that targets GBSS to starch granules. Advances in analytical techniques have resolved the fine structure of amylose, raising new questions on how structure is determined during biosynthesis. Furthermore, the discovery of wild plants that do not produce amylose revives a long-standing question of why starch granules contain amylose, rather than amylopectin alone. Overall, these findings contribute towards a full understanding of amylose biosynthesis, structure and function that will be essential for future approaches to improve starch quality in crops. |
---|---|
AbstractList | Starch granules are composed of two distinct glucose polymers - amylose and amylopectin. Amylose constitutes 5-35% of most natural starches and has a major influence over starch properties in foods. Its synthesis and storage occurs within the semicrystalline amylopectin matrix of starch granules, this poses a great challenge for biochemical and structural analyses. However, the last two decades have seen vast progress in understanding amylose synthesis, including new insights into the action of GRANULE BOUND STARCH SYNTHASE (GBSS), the major glucosyltransferase that synthesises amylose, and the discovery of PROTEIN TARGETING TO STARCH1 (PTST1) that targets GBSS to starch granules. Advances in analytical techniques have resolved the fine structure of amylose, raising new questions on how structure is determined during biosynthesis. Furthermore, the discovery of wild plants that do not produce amylose revives a long-standing question of why starch granules contain amylose, rather than amylopectin alone. Overall, these findings contribute towards a full understanding of amylose biosynthesis, structure and function that will be essential for future approaches to improve starch quality in crops. Summary Starch granules are composed of two distinct glucose polymers – amylose and amylopectin. Amylose constitutes 5–35% of most natural starches and has a major influence over starch properties in foods. Its synthesis and storage occurs within the semicrystalline amylopectin matrix of starch granules, this poses a great challenge for biochemical and structural analyses. However, the last two decades have seen vast progress in understanding amylose synthesis, including new insights into the action of GRANULE BOUND STARCH SYNTHASE (GBSS), the major glucosyltransferase that synthesises amylose, and the discovery of PROTEIN TARGETING TO STARCH1 (PTST1) that targets GBSS to starch granules. Advances in analytical techniques have resolved the fine structure of amylose, raising new questions on how structure is determined during biosynthesis. Furthermore, the discovery of wild plants that do not produce amylose revives a long‐standing question of why starch granules contain amylose, rather than amylopectin alone. Overall, these findings contribute towards a full understanding of amylose biosynthesis, structure and function that will be essential for future approaches to improve starch quality in crops. Starch granules are composed of two distinct glucose polymers - amylose and amylopectin. Amylose constitutes 5-35% of most natural starches and has a major influence over starch properties in foods. Its synthesis and storage occurs within the semicrystalline amylopectin matrix of starch granules, this poses a great challenge for biochemical and structural analyses. However, the last two decades have seen vast progress in understanding amylose synthesis, including new insights into the action of GRANULE BOUND STARCH SYNTHASE (GBSS), the major glucosyltransferase that synthesises amylose, and the discovery of PROTEIN TARGETING TO STARCH1 (PTST1) that targets GBSS to starch granules. Advances in analytical techniques have resolved the fine structure of amylose, raising new questions on how structure is determined during biosynthesis. Furthermore, the discovery of wild plants that do not produce amylose revives a long-standing question of why starch granules contain amylose, rather than amylopectin alone. Overall, these findings contribute towards a full understanding of amylose biosynthesis, structure and function that will be essential for future approaches to improve starch quality in crops.Starch granules are composed of two distinct glucose polymers - amylose and amylopectin. Amylose constitutes 5-35% of most natural starches and has a major influence over starch properties in foods. Its synthesis and storage occurs within the semicrystalline amylopectin matrix of starch granules, this poses a great challenge for biochemical and structural analyses. However, the last two decades have seen vast progress in understanding amylose synthesis, including new insights into the action of GRANULE BOUND STARCH SYNTHASE (GBSS), the major glucosyltransferase that synthesises amylose, and the discovery of PROTEIN TARGETING TO STARCH1 (PTST1) that targets GBSS to starch granules. Advances in analytical techniques have resolved the fine structure of amylose, raising new questions on how structure is determined during biosynthesis. Furthermore, the discovery of wild plants that do not produce amylose revives a long-standing question of why starch granules contain amylose, rather than amylopectin alone. Overall, these findings contribute towards a full understanding of amylose biosynthesis, structure and function that will be essential for future approaches to improve starch quality in crops. |
Author | Seung, David |
Author_xml | – sequence: 1 givenname: David surname: Seung fullname: Seung, David |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32767769$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0MtKAzEUBuAgFXvRRR9AKbjRxbS5niTLUtQKRV0ouBsy0wydMp2pyQzStzfay6KgmM3ZfP_h5O-iVlmVFqE-wUMS3qhcL4YElFAnqEM46EgRJluogzFVEXB4b6Ou90uMsRZAz1CbUQlSgu6g_ni1KSpvB3k58LVx6eIcnWam8PZiN3vo7f7udTKNZs8Pj5PxLEo5ZyoiVs9BywQbnsyxAEmpzCDFgBnlhCXKmCSxIuMyMzSzWlgluA3YciAGOOuhm-3etas-GuvreJX71BaFKW3V-JgKIEJgkP-gnBFFBaE40OsjuqwaV4aPBBWuxJKEcnroaqeaZGXn8drlK-M28b6XAG63IHWV985mB0Jw_N15HDqPfzoPdnRk07w2dV6VtTN58VfiMy_s5vfV8dPLdJ-43CaWvq7cIUFBgyIa2Bd2xZez |
CitedBy_id | crossref_primary_10_1002_jsfa_13933 crossref_primary_10_1016_j_ijbiomac_2024_131956 crossref_primary_10_1016_j_crfs_2025_101023 crossref_primary_10_1016_j_ijbiomac_2023_128426 crossref_primary_10_1111_nph_17342 crossref_primary_10_1038_s41598_024_55581_w crossref_primary_10_3390_molecules26092595 crossref_primary_10_3389_fpls_2024_1332150 crossref_primary_10_1016_j_foodhyd_2021_107042 crossref_primary_10_3390_foods13040556 crossref_primary_10_1002_fft2_490 crossref_primary_10_1016_j_ifset_2024_103658 crossref_primary_10_3389_fnut_2024_1389745 crossref_primary_10_3390_ijms231810741 crossref_primary_10_3390_ijms22094845 crossref_primary_10_1016_j_ijbiomac_2025_141630 crossref_primary_10_1016_j_nexres_2025_100192 crossref_primary_10_3390_foods13071103 crossref_primary_10_3390_plants11202697 crossref_primary_10_1016_j_foodhyd_2023_108821 crossref_primary_10_1016_j_fcr_2025_109760 crossref_primary_10_1016_j_pbi_2021_102013 crossref_primary_10_1007_s10924_024_03265_x crossref_primary_10_1016_j_jafr_2024_101065 crossref_primary_10_3390_ijms22158093 crossref_primary_10_1016_j_tifs_2023_03_017 crossref_primary_10_1002_pol_20241130 crossref_primary_10_1016_j_fochx_2024_101830 crossref_primary_10_1016_j_jfca_2023_105332 crossref_primary_10_1016_j_foohum_2025_100543 crossref_primary_10_1186_s12870_023_04369_7 crossref_primary_10_1590_0104_1428_20210031 crossref_primary_10_3390_ijms22168972 crossref_primary_10_1016_j_ultsonch_2024_106963 crossref_primary_10_1016_j_carbpol_2024_121860 crossref_primary_10_1016_j_cesys_2024_100177 crossref_primary_10_1111_1541_4337_13212 crossref_primary_10_1021_acsomega_4c06313 crossref_primary_10_1039_D4FB00288A crossref_primary_10_3389_fpls_2023_1145837 crossref_primary_10_1002_jsfa_14003 crossref_primary_10_1016_j_fochx_2024_101670 crossref_primary_10_1016_j_plaphy_2025_109543 crossref_primary_10_52419_issn2072_2419_2024_4_26 crossref_primary_10_1038_s41598_022_20618_5 crossref_primary_10_3390_ijms232112981 crossref_primary_10_1016_j_tifs_2021_12_005 crossref_primary_10_1016_j_jbc_2022_102074 crossref_primary_10_1080_10408398_2024_2388279 crossref_primary_10_3390_ijms241310640 crossref_primary_10_1016_j_carbpol_2023_121573 crossref_primary_10_1360_SSC_2023_0024 crossref_primary_10_3390_foods10102359 crossref_primary_10_1016_j_foodres_2023_113564 crossref_primary_10_1016_j_ijbiomac_2024_138724 crossref_primary_10_1016_j_foodres_2023_112875 crossref_primary_10_1007_s11694_024_02852_9 crossref_primary_10_3390_agriculture14111979 crossref_primary_10_1007_s13205_024_04038_y crossref_primary_10_1016_j_carbpol_2022_119640 crossref_primary_10_1016_j_ijbiomac_2023_124315 crossref_primary_10_1016_j_fcr_2022_108493 crossref_primary_10_3390_polym14112215 crossref_primary_10_1007_s00344_024_11514_5 crossref_primary_10_1111_1541_4337_70101 crossref_primary_10_3389_fpls_2023_1207518 crossref_primary_10_1016_j_eurpolymj_2024_113425 crossref_primary_10_3390_ijms25094711 crossref_primary_10_1007_s12520_024_01972_z crossref_primary_10_1016_j_ijbiomac_2024_131488 crossref_primary_10_3390_foods13101507 crossref_primary_10_3390_ijms22115901 crossref_primary_10_3390_ijms25179282 crossref_primary_10_1016_j_carbpol_2024_121885 crossref_primary_10_9787_PBB_2023_11_1_56 crossref_primary_10_1111_1541_4337_13355 crossref_primary_10_1016_j_plantsci_2023_111843 crossref_primary_10_3390_foods13152449 crossref_primary_10_1016_j_colsurfa_2024_133485 crossref_primary_10_3390_foods13030463 crossref_primary_10_1016_j_ijbiomac_2021_11_147 crossref_primary_10_1371_journal_pone_0310990 crossref_primary_10_1016_j_ijbiomac_2023_128864 crossref_primary_10_1111_nph_18992 crossref_primary_10_3389_fpls_2021_745579 crossref_primary_10_1039_D3NJ00830D crossref_primary_10_1016_j_carbpol_2022_120185 crossref_primary_10_1016_j_ijbiomac_2024_131911 crossref_primary_10_1021_acs_jafc_3c07576 crossref_primary_10_1016_j_jfca_2025_107425 crossref_primary_10_1016_j_ijbiomac_2024_138397 crossref_primary_10_1016_j_fcr_2024_109329 crossref_primary_10_1016_j_ultsonch_2024_106891 crossref_primary_10_1016_j_jas_2021_105465 crossref_primary_10_1016_j_foodchem_2024_141558 crossref_primary_10_1016_j_foodchem_2024_140104 crossref_primary_10_3390_molecules29122842 crossref_primary_10_1016_j_biotechadv_2023_108281 crossref_primary_10_1016_j_carbpol_2022_119624 crossref_primary_10_1016_j_xplc_2021_100237 crossref_primary_10_1080_07388551_2022_2092715 crossref_primary_10_1007_s13399_023_04521_1 crossref_primary_10_1111_pbi_14324 crossref_primary_10_3390_foods11162489 crossref_primary_10_1186_s13068_021_02074_x crossref_primary_10_1016_j_jcs_2022_103481 crossref_primary_10_1186_s12864_022_09031_4 crossref_primary_10_3390_ijms24043405 crossref_primary_10_1039_D4FB00030G crossref_primary_10_3389_fnut_2024_1285169 crossref_primary_10_3390_genes12121993 crossref_primary_10_1016_j_foodchem_2024_140611 crossref_primary_10_1016_j_chemosphere_2021_133036 crossref_primary_10_3390_gels10110735 crossref_primary_10_3390_ijms24043927 crossref_primary_10_1002_jsfa_13514 crossref_primary_10_3389_frfst_2023_1331245 crossref_primary_10_3390_agronomy13010017 crossref_primary_10_3390_polym16162259 crossref_primary_10_1007_s11105_025_01547_9 crossref_primary_10_1007_s12298_023_01295_8 crossref_primary_10_1016_j_foodres_2022_112119 crossref_primary_10_1016_j_indcrop_2023_117197 crossref_primary_10_1016_j_carbpol_2023_121490 crossref_primary_10_1021_acs_jchemed_4c00816 crossref_primary_10_1016_j_jplph_2022_153770 crossref_primary_10_1186_s13068_022_02174_2 crossref_primary_10_2298_APT2354265D crossref_primary_10_3390_fermentation9020134 crossref_primary_10_1016_j_jhazmat_2024_136706 crossref_primary_10_1093_plphys_kiae429 crossref_primary_10_1111_ppl_13653 crossref_primary_10_1007_s10142_022_00923_y crossref_primary_10_1111_pbi_14505 crossref_primary_10_1016_j_ijbiomac_2022_10_213 crossref_primary_10_1021_acs_chemrev_3c00811 crossref_primary_10_1002_bab_2546 crossref_primary_10_1093_plcell_koad217 crossref_primary_10_3390_ijms25179243 crossref_primary_10_1093_jimb_kuae004 crossref_primary_10_1080_15592324_2025_2470775 crossref_primary_10_35633_inmateh_73_43 crossref_primary_10_1007_s13300_022_01283_3 crossref_primary_10_1111_1541_4337_12749 crossref_primary_10_1016_j_jclepro_2023_140430 crossref_primary_10_1016_j_ijbiomac_2024_136058 crossref_primary_10_3389_fpls_2021_757997 crossref_primary_10_1016_j_ijbiomac_2023_124506 crossref_primary_10_3389_fnut_2025_1513814 crossref_primary_10_1016_j_ijbiomac_2022_11_129 crossref_primary_10_3390_nu16162707 crossref_primary_10_3390_ijms21197011 crossref_primary_10_1186_s12915_022_01408_x crossref_primary_10_1021_acsagscitech_3c00450 crossref_primary_10_1073_pnas_2305990120 |
Cites_doi | 10.1002/1521-379X(200110)53:10<504::AID-STAR504>3.0.CO;2-5 10.1042/bj3420647 10.3389/fpls.2018.01138 10.1002/star.19870390207 10.1126/sciadv.aat6086 10.1073/pnas.82.12.4177 10.1105/tpc.17.00222 10.1111/tpj.12633 10.1007/s10973-006-7880-z 10.1002/star.19970491103 10.1093/jxb/ert187 10.1107/S090744491300440X 10.1002/star.19940460402 10.1093/oxfordjournals.jhered.a109700 10.1146/annurev-arplant-042809-112301 10.1186/1471-2229-8-120 10.1073/pnas.0510737103 10.1016/j.copbio.2010.11.014 10.1046/j.1365-313X.1996.10061135.x 10.1007/BF02341037 10.1105/tpc.19.00089 10.1021/bm990016l 10.1094/CCHEM.2004.81.5.611 10.1002/star.201300238 10.5962/bhl.title.37128 10.1046/j.1365-3040.1997.d01-48.x 10.1105/tpc.002907 10.1046/j.1365-313x.2001.01012.x 10.1093/jxb/ern198 10.1016/j.plantsci.2013.05.019 10.1104/pp.104.4.1449 10.1111/j.1365-313X.2006.02968.x 10.5458/jag.52.239 10.1371/journal.pbio.1002080 10.1104/pp.46.2.299 10.1111/1541-4337.12416 10.1007/BF00019490 10.2307/3869673 10.1104/pp.010127 10.3390/agronomy7030056 10.1111/j.1365-313X.2005.02462.x 10.1016/0141-8130(96)81838-1 10.1016/j.ijbiomac.2007.07.005 10.1271/bbb1961.49.1973 10.1007/s11248-011-9507-9 10.1093/genetics/162.2.941 10.1104/pp.125.4.1723 10.1046/j.1432-1327.1999.00861.x 10.1016/0092-8674(90)90721-P 10.1016/j.carbpol.2015.03.081 10.1016/S0008-6215(00)80215-3 10.1093/jxb/err188 10.1007/s11032-009-9360-1 10.1104/pp.118.2.451 10.1093/molbev/msm280 10.6090/jarq.40.327 10.1002/bip.21005 10.1007/s00438-005-0013-8 10.1105/tpc.18.00219 10.1186/1756-0500-6-84 10.1105/tpc.109.066522 10.1111/jipb.12866 10.1093/jxb/erw503 10.1104/pp.005454 10.1007/s00018-016-2250-x 10.1016/j.molp.2019.05.011 10.1002/j.2050-0416.1969.tb03194.x 10.1093/pcp/pcs190 10.1016/S0008-6215(00)00275-5 10.1104/pp.101.1.237 10.1186/1471-2229-8-96 10.1016/j.pbi.2003.12.001 10.1016/j.carbpol.2018.09.078 10.1007/BF00249167 10.1105/tpc.19.00946 10.1021/ma970136q 10.1007/s10126-006-6104-7 10.1007/BF02191591 10.1046/j.1365-313x.1998.00317.x 10.1271/bbb.120305 10.1104/pp.122.1.255 10.1104/pp.104.044347 10.1016/0008-6215(93)84260-D 10.1104/pp.63.5.973 10.1002/star.201200211 10.1128/EC.00380-05 10.1104/pp.120.4.993 10.1078/0176-1617-00360 10.1104/pp.107.102533 10.1093/mp/sst131 10.1093/molbev/msq040 10.1016/0008-6215(95)00381-9 10.1093/oxfordjournals.jhered.a108711 10.1371/journal.pone.0030088 10.1105/tpc.16.00011 10.1111/pbi.13137 10.1111/j.1469-8137.1981.tb04568.x 10.1038/srep40124 10.1093/jxb/47.2.171 10.1002/star.200600515 10.1023/A:1023053420632 10.1038/75427 10.1104/pp.102.4.1269 10.1104/pp.19.01062 10.1007/BF00485766 10.1071/BI9630070 10.2307/3870306 10.1093/pcp/pcg068 10.1094/CCHEM.1999.76.5.629 10.1094/CCHEM-11-12-0141-FI 10.1007/s11032-008-9178-2 10.1093/oxfordjournals.jhered.a102131 10.1105/tpc.017400 10.1152/physrev.2001.81.3.1031 10.1046/j.1365-3040.1999.00437.x 10.1042/BJ20120573 10.5458/jag.jag.JAG-2018_005 10.1016/j.bbagen.2013.08.029 10.1016/S0065-2113(08)60859-7 10.5458/jag.52.233 10.1105/tpc.114.122721 10.1111/jipb.12620 10.1146/annurev.arplant.54.031902.134927 10.1002/star.19940460906 10.5458/jag.jag.JAG-2012_018 10.1007/s00425-003-1101-9 10.1093/oxfordjournals.jhered.a103794 10.1128/jb.174.11.3612-3620.1992 10.1093/jxb/ery412 10.1007/s004250050627 10.1104/pp.111.3.821 10.1016/j.carbpol.2011.09.093 10.1093/jxb/ery398 10.1021/bm900426n 10.1186/1471-2229-12-223 10.1016/j.jcs.2013.12.012 10.1093/jxb/err341 10.1104/pp.010640 10.1111/jipb.12848 10.1111/j.1439-0523.2012.02004.x 10.1007/BF00222961 10.1093/jxb/ers235 10.1039/jr9620000222 10.1007/BF00223647 10.1021/jf070633y 10.1007/s004250050639 10.1105/tpc.108.063487 10.1074/jbc.271.27.16281 10.1186/s12870-017-1118-z 10.1016/j.foodchem.2015.09.112 10.1046/j.1365-313X.1992.t01-42-00999.x 10.1007/s10681-005-5298-5 10.1016/j.jsb.2003.08.009 10.1042/0264-6021:3400183 10.1016/0168-9452(89)90023-X 10.1046/j.1365-313X.1995.7040613.x 10.1007/s00239-009-9300-z 10.1094/CCHEM.2004.81.3.377 10.1016/0008-6215(87)80008-3 10.1007/BF00198043 10.1016/j.carbpol.2018.05.049 10.1104/pp.003756 10.1074/jbc.M302806200 10.1104/pp.106.081885 10.1046/j.1365-313X.1993.04010191.x 10.1111/pbi.13367 10.1093/pcp/pcn066 10.1016/j.cub.2009.01.044 10.1128/EC.00373-07 10.3389/fpls.2015.01265 10.1016/j.carbpol.2011.11.072 10.3389/fpls.2018.00746 10.1021/jf5011676 10.1074/jbc.273.35.22232 |
ContentType | Journal Article |
Copyright | 2020 The Author © 2020 New Phytologist Trust 2020 The Author. New Phytologist © 2020 New Phytologist Trust 2020 The Author. New Phytologist © 2020 New Phytologist Trust. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Author © 2020 New Phytologist Trust – notice: 2020 The Author. New Phytologist © 2020 New Phytologist Trust – notice: 2020 The Author. New Phytologist © 2020 New Phytologist Trust. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.16858 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 1504 |
ExternalDocumentID | 32767769 10_1111_nph_16858 NPH16858 26968196 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council funderid: BBS/E/J/000PR9790; BBS/E/J/000PR9799 – fundername: John Innes Foundation – fundername: Biotechnology and Biological Sciences Research Council grantid: BBS/E/J/000PR9790 – fundername: Biotechnology and Biological Sciences Research Council grantid: BBS/E/J/000PR9799 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASVR ABEFU ABEML ACCFJ ACHIC ACQPF ADULT AEEZP AEQDE AEUQT AFPWT AHXOZ AILXY AIWBW AJBDE AQVQM AS~ CAG COF DOOOF EJD ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU LW6 MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ABSQW ADXHL AGUYK CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4438-1e9d697b0a4bd0567227f6c06032413b8aabbe5f47fa2fe95e854ea4be461a643 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:23:38 EDT 2025 Fri Jul 11 16:03:11 EDT 2025 Mon Aug 18 14:40:53 EDT 2025 Mon Jul 21 06:04:51 EDT 2025 Thu Apr 24 23:05:59 EDT 2025 Tue Jul 01 02:28:35 EDT 2025 Wed Jan 22 16:32:13 EST 2025 Thu Jul 03 21:56:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | GRANULE BOUND STARCH SYNTHASE (GBSS) starch granules starch synthesis amylose starch carbohydrate amylopectin |
Language | English |
License | Attribution 2020 The Author. New Phytologist © 2020 New Phytologist Trust. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4438-1e9d697b0a4bd0567227f6c06032413b8aabbe5f47fa2fe95e854ea4be461a643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3905-3647 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.16858 |
PMID | 32767769 |
PQID | 2456707181 |
PQPubID | 2026848 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2561550674 proquest_miscellaneous_2431825120 proquest_journals_2456707181 pubmed_primary_32767769 crossref_primary_10_1111_nph_16858 crossref_citationtrail_10_1111_nph_16858 wiley_primary_10_1111_nph_16858_NPH16858 jstor_primary_26968196 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201201 December 2020 2020-12-00 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201201 day: 1 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2020 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2002; 14 2013; 69 1976; 67 2004; 7 2019; 12 2011; 62 2013; 64 2019; 17 2014; 26 1990; 182 2019; 204 1997; 49 2012b; 448 2012; 12 2003; 51 2003; 278 1993; 247 2013; 6 1987; 39 1999; 209 2003; 54 1990; 60 2020; 18 1981; 88 1998; 273 1998; 16 2010; 22 1965; 1 2018; 9 2012; 131 2010; 27 2000; 18 2009; 10 1909 2010; 25 2018; 4 2013; 54 2008; 25 2007; 9 2013; 60 1995; 248 2018; 30 2008; 22 2000; 122 2008; 20 2009; 19 1994; 71 1992; 2 2012; 21 2001; 53 2003; 44 2009; 69 2003; 218 1987; 168 1989; 64 2019; 31 1984; 48 2015; 127 1997; 20 2002; 130 2006; 58 2017; 68 2012a; 63 1994; 88 2013; 90 2008; 59 1999; 22 2001; 26 1996; 92 1985; 82 2020; 32 1962; II 1993; 102 2014; 1840 1996; 10 1993; 101 1995; 7 2018; 196 2015; 67 2016; 6 2016; 7 2006; 40 1997; 30 2008; 49 2019b; 71 1921; 12 2013; 210 1996; 111 2016; 28 2007; 87 2001; 158 2006; 103 2017; 7 1933; 24 1987; 75 1974; 11 1999b; 340 2007; 144 1969; 75 1999; 120 1998; 118 2008; 7 2008; 8 2016; 73 2000; 1 2002b; 129 2014; 62 2014; 66 1993; 4 2010; 61 1968; 20 2001; 330 2004; 136 2019; 62 1994; 104 2005; 144 2019; 66 1993; 70 2014; 59 1979; 63 2019a; 18 2014; 7 1996; 8 2016; 196 2012; 63 2015; 13 2019; 70 2009; 21 2004; 81 2005; 274 1995; 17 1992; 186 1982; 73 2020; 182 1996; 282 2006; 5 1994; 46 2005; 43 2017; 29 1999; 266 2018; 60 2007; 55 2012; 76 1985; 49 2001; 125 2001; 127 2002a; 128 2001; 81 1963; 16 2014; 80 1992; 174 2017; 17 2002; 162 2004; 16 1999a; 653 2005; 52 1996; 271 2008; 89 1999; 76 1994b; 26 2006; 142 2016; 60 1992; 69 2007; 41 1996; 47 2012; 7 1994a; 6 2012; 88 2012; 87 2003; 143 2007; 49 1970; 46 e_1_2_13_120_1 e_1_2_13_143_1 e_1_2_13_166_1 e_1_2_13_24_1 Matheson NK (e_1_2_13_103_1) 1963; 16 e_1_2_13_47_1 e_1_2_13_20_1 e_1_2_13_66_1 e_1_2_13_101_1 e_1_2_13_147_1 e_1_2_13_124_1 e_1_2_13_85_1 e_1_2_13_8_1 e_1_2_13_162_1 e_1_2_13_92_1 e_1_2_13_96_1 e_1_2_13_117_1 e_1_2_13_17_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_59_1 e_1_2_13_154_1 e_1_2_13_131_1 e_1_2_13_32_1 e_1_2_13_55_1 e_1_2_13_112_1 e_1_2_13_158_1 e_1_2_13_135_1 e_1_2_13_177_1 e_1_2_13_51_1 e_1_2_13_74_1 e_1_2_13_173_1 e_1_2_13_70_1 e_1_2_13_150_1 Santelia D (e_1_2_13_127_1) 2010; 22 e_1_2_13_4_1 e_1_2_13_105_1 e_1_2_13_88_1 e_1_2_13_128_1 e_1_2_13_29_1 e_1_2_13_109_1 e_1_2_13_25_1 e_1_2_13_48_1 Greenwood CT (e_1_2_13_62_1) 1962 e_1_2_13_165_1 e_1_2_13_100_1 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_67_1 e_1_2_13_104_1 e_1_2_13_123_1 e_1_2_13_86_1 e_1_2_13_146_1 e_1_2_13_9_1 e_1_2_13_40_1 e_1_2_13_63_1 e_1_2_13_161_1 e_1_2_13_180_1 e_1_2_13_95_1 e_1_2_13_116_1 e_1_2_13_99_1 Wang W (e_1_2_13_168_1) 2019; 62 Denyer K (e_1_2_13_43_1) 1999; 653 e_1_2_13_139_1 e_1_2_13_18_1 e_1_2_13_14_1 e_1_2_13_130_1 e_1_2_13_153_1 e_1_2_13_37_1 e_1_2_13_79_1 e_1_2_13_10_1 e_1_2_13_56_1 e_1_2_13_115_1 e_1_2_13_134_1 e_1_2_13_157_1 e_1_2_13_176_1 e_1_2_13_33_1 e_1_2_13_75_1 Emoto KN (e_1_2_13_52_1) 2016; 60 Nielsen MM (e_1_2_13_111_1) 2018; 9 e_1_2_13_172_1 e_1_2_13_71_1 e_1_2_13_5_1 e_1_2_13_108_1 e_1_2_13_49_1 e_1_2_13_122_1 e_1_2_13_141_1 e_1_2_13_164_1 e_1_2_13_26_1 e_1_2_13_68_1 Zhou W (e_1_2_13_181_1) 2019; 62 e_1_2_13_45_1 e_1_2_13_126_1 e_1_2_13_87_1 e_1_2_13_145_1 e_1_2_13_22_1 e_1_2_13_64_1 e_1_2_13_41_1 e_1_2_13_60_1 e_1_2_13_83_1 e_1_2_13_6_1 Helle S (e_1_2_13_69_1) 2018; 9 e_1_2_13_160_1 e_1_2_13_90_1 e_1_2_13_94_1 e_1_2_13_98_1 e_1_2_13_119_1 e_1_2_13_138_1 Karper RE (e_1_2_13_81_1) 1933; 24 e_1_2_13_19_1 e_1_2_13_133_1 e_1_2_13_179_1 Arai Y (e_1_2_13_3_1) 1984; 48 e_1_2_13_15_1 e_1_2_13_38_1 e_1_2_13_57_1 e_1_2_13_110_1 e_1_2_13_152_1 Stamp P (e_1_2_13_142_1) 2016; 7 e_1_2_13_137_1 e_1_2_13_175_1 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_53_1 e_1_2_13_76_1 e_1_2_13_114_1 e_1_2_13_156_1 e_1_2_13_171_1 e_1_2_13_30_1 e_1_2_13_72_1 e_1_2_13_2_1 Li E (e_1_2_13_91_1) 2019; 71 e_1_2_13_107_1 e_1_2_13_149_1 e_1_2_13_121_1 e_1_2_13_144_1 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_163_1 Jane J (e_1_2_13_78_1) 1992; 69 e_1_2_13_102_1 e_1_2_13_125_1 e_1_2_13_148_1 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_65_1 e_1_2_13_167_1 e_1_2_13_182_1 e_1_2_13_7_1 e_1_2_13_61_1 e_1_2_13_80_1 e_1_2_13_140_1 Wang YJ (e_1_2_13_169_1) 1993; 70 e_1_2_13_93_1 e_1_2_13_97_1 e_1_2_13_118_1 e_1_2_13_39_1 e_1_2_13_132_1 e_1_2_13_155_1 e_1_2_13_178_1 e_1_2_13_35_1 e_1_2_13_16_1 e_1_2_13_58_1 e_1_2_13_113_1 e_1_2_13_136_1 e_1_2_13_159_1 e_1_2_13_174_1 e_1_2_13_31_1 e_1_2_13_77_1 e_1_2_13_12_1 e_1_2_13_54_1 e_1_2_13_170_1 e_1_2_13_73_1 e_1_2_13_50_1 e_1_2_13_151_1 e_1_2_13_106_1 e_1_2_13_129_1 Kasemsuwan T (e_1_2_13_82_1) 1994; 71 e_1_2_13_89_1 Kempton JH (e_1_2_13_84_1) 1921; 12 e_1_2_13_28_1 |
References_xml | – volume: 52 start-page: 233 year: 2005 end-page: 237 article-title: Structural characterization of long unit‐chains of amylopectin publication-title: Journal of Applied Glycoscience – volume: 131 start-page: 700 year: 2012 end-page: 706 article-title: Amylose content is not affected by overexpression of the gene in durum wheat publication-title: Plant Breeding – volume: 248 start-page: 253 year: 1995 end-page: 259 article-title: Production of waxy (amylose‐free) wheats publication-title: MGG Molecular & General Genetics – volume: 10 start-page: 2245 year: 2009 end-page: 2253 article-title: Characterization of starch by size‐exclusion chromatography: the limitations imposed by shear scission publication-title: Biomacromolecules – volume: 7 start-page: 117 year: 2016 end-page: 123 article-title: Improving waxy maize, the heritage of South East Asia publication-title: International Journal of Environmental and Rural Development – volume: 60 start-page: 3 year: 2013 end-page: 20 article-title: Starch synthesizing reactions and paths: in vitro and in vivo studies publication-title: Journal of Applied Glycoscience – volume: 271 start-page: 16281 year: 1996 end-page: 16287 article-title: Control of starch composition and structure through substrate supply in the monocellular alga publication-title: Journal of Biological Chemistry – volume: 49 start-page: 438 year: 1997 end-page: 443 article-title: Comparison between amylose‐free and amylose containing potato starches publication-title: Starch ‐ Stärke – volume: 69 start-page: 405 year: 1992 end-page: 409 article-title: Location of amylose in normal starch granules. I: Susceptibility of amylose and amylopectin to cross‐linking reagents publication-title: Cereal Chemistry – volume: 31 start-page: 2169 year: 2019 end-page: 2186 article-title: LIKE SEX4 1 acts as a beta‐amylase‐binding scaffold on starch granules during starch degradation publication-title: Plant Cell – volume: 127 start-page: 264 year: 2015 end-page: 274 article-title: Roles of GBSSI and SSIIa in determining amylose fine structure publication-title: Carbohydrate Polymers – volume: 1 start-page: 71 year: 1965 end-page: 82 article-title: Studies on the biosynthesis of starch granules publication-title: Carbohydrate Research – volume: 118 start-page: 451 year: 1998 end-page: 459 article-title: Characterization of a granule‐bound starch synthase isoform found in the pericarp of wheat publication-title: Plant Physiology – volume: 10 start-page: 1135 year: 1996 end-page: 1143 article-title: The elongation of amylose and amylopectin chains in isolated starch granules publication-title: The Plant Journal – volume: 44 start-page: 473 year: 2003 end-page: 480 article-title: Introduction of transgene into rice mutants leads to both high‐ and low‐amylose rice publication-title: Plant and Cell Physiology – volume: 9 start-page: 192 year: 2007 end-page: 202 article-title: Variation in storage α‐polyglucans of red algae: Amylose and semi‐amylopectin types in Porphyridium and glycogen type in Cyanidium publication-title: Marine Biotechnology – volume: 162 start-page: 941 year: 2002 end-page: 950 article-title: Molecular evidence on the origin and evolution of glutinous rice publication-title: Genetics – volume: 9 start-page: 1 year: 2018 end-page: 14 article-title: Proteome analysis of potato starch reveals the presence of new starch metabolic proteins as well as multiple protease inhibitors publication-title: Frontiers in Plant Science – volume: 82 start-page: 4177 year: 1985 end-page: 4181 article-title: Molecular basis of mutations at the locus of maize: correlation with the fine structure genetic map publication-title: Proceedings of the National Academy of Sciences, USA – volume: 12 start-page: 1 year: 2012 end-page: 16 article-title: Concerted suppression of all starch branching enzyme genes in barley produces amylose‐only starch granules publication-title: BMC Plant Biology – volume: 1 start-page: 126 year: 2000 end-page: 132 article-title: Internal structure of normal maize starch granules revealed by chemical surface gelatinization publication-title: Biomacromolecules – volume: 196 start-page: 422 year: 2018 end-page: 426 article-title: Ultra‐high performance liquid chromatography‐size exclusion chromatography (UPLC‐SEC) as an efficient tool for the rapid and highly informative characterisation of biopolymers publication-title: Carbohydrate Polymers – volume: 64 start-page: 3453 year: 2013 end-page: 3466 article-title: bZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm publication-title: Journal of Experimental Botany – volume: 75 start-page: 156 year: 1969 end-page: 164 article-title: Development of starch and other components in normal and high amylose barley publication-title: Journal of the Institute of Brewing – volume: 168 start-page: 79 year: 1987 end-page: 88 article-title: Structures of rice amylopectins with low and high affinities for iodine publication-title: Carbohydrate Research – volume: 22 start-page: 543 year: 1999 end-page: 550 article-title: Evidence that amylose synthesis occurs within the matrix of the starch granule in potato tubers publication-title: Plant, Cell & Environment – volume: 5 start-page: 954 year: 2006 end-page: 963 article-title: Nature of the periplastidial pathway of starch synthesis in the cryptophyte publication-title: Eukaryotic Cell – volume: 67 start-page: 14 year: 2015 end-page: 29 article-title: Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches publication-title: Starch/Staerke – volume: 1840 start-page: 113 year: 2014 end-page: 119 article-title: Tracking sulfur and phosphorus within single starch granules using synchrotron X‐ray microfluorescence mapping publication-title: Biochimica et Biophysica Acta – volume: 142 start-page: 305 year: 2006 end-page: 317 article-title: Circadian clock regulation of starch metabolism establishes GBSSI as a major contributor to amylopectin synthesis in publication-title: Plant Physiology – volume: 18 start-page: 551 year: 2000 end-page: 554 article-title: Production of very‐high‐amylose potato starch by inhibition of SBE A and B publication-title: Nature Biotechnology – volume: 247 start-page: 279 year: 1993 end-page: 290 article-title: Internal structure of the potato starch granule revealed by chemical gelatinization publication-title: Carbohydrate Research – volume: 17 start-page: 315 year: 1995 end-page: 321 article-title: The influence of amylose on starch granule structure publication-title: International Journal of Biological Macromolecules – volume: 62 start-page: 948 year: 2019 end-page: 966 article-title: GBSS‐BINDING PROTEIN, encoding a CBM48 domain‐containing protein, affects rice quality and yield publication-title: Journal of Integrative Plant Biology – volume: 20 start-page: 275 year: 1968 end-page: 322 article-title: Carbohydrate synthesis in maize publication-title: Advances in Agronomy – volume: 120 start-page: 993 year: 1999 end-page: 1003 article-title: Genetic and biochemical evidence for the involvement of α‐1,4 glucanotransferases in amylopectin synthesis publication-title: Plant Physiology – volume: 103 start-page: 3546 year: 2006 end-page: 3551 article-title: High‐amylose wheat generated by RNA interference improves indices of large‐bowel health in rats publication-title: Proceedings of the National Academy of Sciences, USA – volume: 22 start-page: 271 year: 2010 end-page: 280 article-title: Progress in Arabidopsis starch research and potential biotechnological applications publication-title: Current Opinion in Biotechnology – volume: 158 start-page: 479 year: 2001 end-page: 487 article-title: The control of amylose synthesis publication-title: Journal of Plant Physiology – volume: 17 start-page: 1 year: 2017 end-page: 13 article-title: phosphoproteome characterization reveals key starch granule‐binding phosphoproteins involved in wheat water‐deficit response publication-title: BMC Plant Biology – volume: 62 start-page: 832 year: 2019 end-page: 846 article-title: Production of very‐high‐amylose cassava by post‐transcriptional silencing of branching enzyme genes publication-title: Journal of Integrative Plant Biology – volume: 27 start-page: 1478 year: 2010 end-page: 1494 article-title: Molecular basis of the waxy endosperm starch phenotype in broomcorn millet ( L.) publication-title: Molecular Biology and Evolution – volume: 13 year: 2015 article-title: PROTEIN TARGETING TO STARCH is required for localising GRANULE‐BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis publication-title: PLoS Biology – volume: 58 start-page: 443 year: 2006 end-page: 452 article-title: Molecular structure of starches from cassava varieties having different cooked root textures publication-title: Starch/Staerke – volume: 26 start-page: 1759 year: 1994b end-page: 1773 article-title: Field evaluation of transgenic potato plants expressing an antisense gene: increase of the antisense effect during tuber growth publication-title: Plant Molecular Biology – volume: 70 start-page: 485 year: 2019 end-page: 496 article-title: Protein Targeting to Starch 1 is essential for starchy endosperm development in barley publication-title: Journal of Experimental Botany – volume: 88 start-page: 67 year: 1981 end-page: 71 article-title: Amylose in floridean starch publication-title: New Phytologist – volume: 89 start-page: 761 year: 2008 end-page: 768 article-title: A novel approach for calculating starch crystallinity and its correlation with double helix content: a combined XRD and NMR study publication-title: Biopolymers – volume: 209 start-page: 230 year: 1999 end-page: 238 article-title: The influence of alterations in ADP‐glucose pyrophosphorylase activities on starch structure and composition in potato tubers publication-title: Planta – volume: 29 start-page: 1657 year: 2017 end-page: 1677 article-title: Homologs of PROTEIN TARGETING TO STARCH control starch granule initiation in Arabidopsis leaves publication-title: Plant Cell – volume: 71 start-page: 282 year: 1994 end-page: 287 article-title: Location of amylose in normal starch granules. II: Locations of phosphodiester cross‐linking revealed by phosphorus‐31 nuclear magnetic resonance publication-title: Cereal Chemistry – volume: 41 start-page: 534 year: 2007 end-page: 547 article-title: Structural and thermodynamic properties of rice starches with different genetic background. Part 2. Defectiveness of different supramolecular structures in starch granules publication-title: International Journal of Biological Macromolecules – volume: 19 start-page: 359 year: 2009 end-page: 368 article-title: Chlamydomonas CONSTANS and the evolution of plant photoperiodic signaling publication-title: Current Biology – volume: II start-page: 222 year: 1962 end-page: 229 article-title: Physicochemical studies on starches. Part XXIV. The fractionation and characterization of starches of various plant origins publication-title: Journal of the Chemical Society – volume: 69 start-page: 625 year: 2009 end-page: 634 article-title: Isoforms of GBSSI and SSII in four legumes and their phylogenetic relationship to their orthologs from other angiosperms publication-title: Journal of Molecular Evolution – volume: 2 start-page: 193 year: 1992 end-page: 202 article-title: Characterization of cDNAs encoding two isoforms of granule‐bound starch synthase which show differential expression in developing storage organs of pea and potato publication-title: The Plant Journal – volume: 60 start-page: 172 year: 2016 end-page: 178 article-title: Variation and geographical distribution of perisperm starch in grain Amaranths ( .), and the origin of waxy perisperm type publication-title: Tropical Agriculture and Development – volume: 210 start-page: 141 year: 2013 end-page: 50 article-title: Oligomerization of rice granule‐bound starch synthase 1 modulates its activity regulation publication-title: Plant Science – volume: 136 start-page: 2687 year: 2004 end-page: 2699 article-title: Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves publication-title: Plant Physiology – volume: 81 start-page: 377 year: 2004 end-page: 383 article-title: Grain quality characteristics and milling performance of full and partial waxy durum lines publication-title: Cereal Chemistry – volume: 130 start-page: 190 year: 2002 end-page: 198 article-title: The altered pattern of amylose accumulation in the endosperm of low‐amylose barley cultivars is attributable to a single mutant allele of Granule‐Bound Starch Synthase I with a deletion in the 5’‐non‐coding region publication-title: Plant Physiology – volume: 6 start-page: 84 year: 2013 article-title: Intraspecific sequence variation and differential expression in starch synthase genes of publication-title: BMC Research Notes – volume: 54 start-page: 465 year: 2013 end-page: 473 article-title: Physicochemical variation of cyanobacterial starch, the insoluble α‐glucans in cyanobacteria publication-title: Plant and Cell Physiology – volume: 28 start-page: 1472 year: 2016 end-page: 1489 article-title: The starch granule‐associated protein EARLY STARVATION1 is required for the control of starch degradation in leaves publication-title: Plant Cell – volume: 144 start-page: 2009 year: 2007 end-page: 2023 article-title: Characterization of SSIIIa‐deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm publication-title: Plant Physiology – volume: 76 start-page: 629 year: 1999 end-page: 637 article-title: Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch publication-title: Cereal Chemistry – volume: 182 start-page: 599 year: 1990 end-page: 604 article-title: Evidence that the “waxy” protein of pea ( L.) is not the major starch‐granule‐bound starch synthase publication-title: Planta – volume: 47 start-page: 171 year: 1996 end-page: 180 article-title: An analysis of seed development in XIX. Effect of mutant alleles at the and loci on starch grain size and on the content and composition of starch in developing pea seeds publication-title: Journal of Experimental Botany – volume: 32 start-page: 2543 year: 2020 end-page: 2565 article-title: STARCH SYNTHASE 5: A non‐canonical starch synthase‐like protein involved in starch granule initiation in Arabidopsis publication-title: Plant Cell – volume: 16 start-page: 70 year: 1963 article-title: Diurnal‐nocturnal changes in the starch of tobacco leaves publication-title: Australian Journal of Biological Sciences – volume: 143 start-page: 229 year: 2003 end-page: 241 article-title: The molecular deposition of transgenically modified starch in the starch granule as imaged by functional microscopy publication-title: Journal of Structural Biology – volume: 71 start-page: 1 year: 2019b end-page: 7 article-title: The role of pullulanase in starch biosynthesis, structure, and thermal properties by studying sorghum with increased pullulanase activity publication-title: Starch/Staerke – volume: 17 start-page: 2259 year: 2019 end-page: 2271 article-title: Cas9‐mediated mutagenesis of potato starch‐branching enzymes generates a range of tuber starch phenotypes publication-title: Plant Biotechnology Journal – volume: 49 start-page: 925 year: 2008 end-page: 933 article-title: Granule‐bound starch synthase I is responsible for biosynthesis of extra‐long unit chains of amylopectin in rice publication-title: Plant and Cell Physiology – volume: 87 start-page: 1941 year: 2012 end-page: 1949 article-title: New insights on the mechanism of acid degradation of pea starch publication-title: Carbohydrate Polymers – volume: 21 start-page: 39 year: 2012 end-page: 50 article-title: Field testing and exploitation of genetically modified cassava with low‐amylose or amylose‐free starch in Indonesia publication-title: Transgenic Research – volume: 75 start-page: 217 year: 1987 end-page: 221 article-title: Isolation of an amylose‐free starch mutant of the potato ( L.) publication-title: Theoretical and Applied Genetics – volume: 52 start-page: 239 year: 2005 end-page: 246 article-title: Structure and properties of endosperm starches from cultivated rice of Asia and other countries publication-title: Journal of Applied Glycoscience – volume: 204 start-page: 24 year: 2019 end-page: 31 article-title: How amylose molecular fine structure of rice starch affects functional properties publication-title: Carbohydrate Polymers – volume: 144 start-page: 151 year: 2005 end-page: 156 article-title: Characterization of waxy grain sorghum lines in relation to granule‐bound starch synthase publication-title: Euphytica – volume: 22 start-page: 329 year: 2008 end-page: 338 article-title: Molecular evidence for post‐domestication selection in the gene of Chinese waxy maize publication-title: Molecular Breeding – volume: 128 start-page: 1069 year: 2002a end-page: 1076 article-title: The priming of amylose synthesis in Arabidopsis leaves publication-title: Plant Physiology – volume: 653 start-page: 647 year: 1999a end-page: 653 article-title: Interaction with amylopectin influences the ability of granule‐bound starch synthase I to elongate malto‐oligosaccharides publication-title: Biochemical Journal – volume: 60 start-page: 369 year: 2018 end-page: 375 article-title: Generation of new glutinous rice by CRISPR/Cas9‐targeted mutagenesis of the gene in elite rice varieties publication-title: Journal of Integrative Plant Biology – volume: 102 start-page: 1269 year: 1993 end-page: 1273 article-title: Differentiation of the properties of the branching isozymes from maize ( ) publication-title: Plant Physiology – volume: 26 start-page: 565 year: 2014 end-page: 584 article-title: Photoperiodic control of carbon distribution during the floral transition in Arabidopsis publication-title: Plant Cell – volume: 90 start-page: 312 year: 2013 end-page: 325 article-title: What is being learned about starch properties from multiple‐level characterization publication-title: Cereal Chemistry – volume: 59 start-page: 3395 year: 2008 end-page: 3406 article-title: Proteome and phosphoproteome analysis of starch granule‐associated proteins from normal maize and mutants affected in starch biosynthesis publication-title: Journal of Experimental Botany – volume: 73 start-page: 467 year: 1982 article-title: Inheritance of starch characteristics in perisperm of publication-title: Journal of Heredity – volume: 46 start-page: 121 year: 1994 end-page: 129 article-title: Anthology of starch granule morphology by scanning electron microscopy publication-title: Starch – Stärke – volume: 70 start-page: 771 year: 2019 end-page: 784 article-title: Starch granule initiation and morphogenesis – progress in Arabidopsis and cereals publication-title: Journal of Experimental Botany – volume: 8 start-page: 96 year: 2008 article-title: Overlapping functions of the starch synthases SSII and SSIII in amylopectin biosynthesis in Arabidopsis publication-title: BMC Plant Biology – volume: 48 start-page: 1763 year: 1984 end-page: 1775 article-title: Structural characterization of amylopectin and intermediate material in amylomaize starch granules publication-title: Agricultural and Biological Chemistry – volume: 26 start-page: 89 year: 2001 end-page: 100 article-title: A critical role for disproportionating enzyme in starch breakdown is revealed by a knock‐out mutation in Arabidopsis publication-title: The Plant Journal – volume: 218 start-page: 261 year: 2003 end-page: 268 article-title: Cloning and characterization of the gene in rice: gene expression is regulated by the nitrogen level, sugar and circadian rhythm publication-title: Planta – volume: 66 start-page: 28 year: 2014 end-page: 40 article-title: Starch metabolism in green algae publication-title: Starch – Stärke – volume: 49 start-page: 1973 year: 1985 end-page: 1978 article-title: Developmental changes in the structure of endosperm starch of rice ( L.) publication-title: Agricultural and Biological Chemistry – volume: 16 start-page: 531 year: 1998 end-page: 540 article-title: Altered plastidic ATP/ADP‐transporter activity influences potato ( L.) tuber morphology, yield and composition of tuber starch publication-title: The Plant Journal – volume: 66 start-page: 37 year: 2019 end-page: 46 article-title: Three major nucleotide polymorphisms in the gene correlated with the amounts of extra‐long chains of amylopectin in rice cultivars with S or L‐type amylopectin publication-title: Journal of Applied Glycoscience – volume: 87 start-page: 575 year: 2007 end-page: 584 article-title: Structure of starches extracted from near‐isogenic wheat lines: PPPart 2. Molecular organization of amylopectin clusters publication-title: Journal of Thermal Analysis and Calorimetry – volume: 7 start-page: 56 year: 2017 article-title: Understanding starch structure: recent progress publication-title: Agronomy – volume: 63 start-page: 973 year: 1979 end-page: 977 article-title: Starch and its component ratio in developing cotton leaves publication-title: Plant Physiology – volume: 88 start-page: 369 year: 1994 end-page: 375 article-title: Expression of a wild‐type GBSS gene introduced into an amylose‐free potato mutant by and the inheritance of the inserts at the microsporic level publication-title: Theoretical and Applied Genetics – volume: 7 start-page: 404 year: 2014 end-page: 421 article-title: SALT‐RESPONSIVE ERF1 is a negative regulator of grain filling and gibberellin‐mediated seedling establishment in rice publication-title: Molecular Plant – volume: 7 start-page: 210 year: 2004 end-page: 218 article-title: Improving starch for food and industrial applications publication-title: Current Opinion in Plant Biology – volume: 209 start-page: 324 year: 1999 end-page: 329 article-title: The relationship between the rate of starch synthesis, the adenosine 5’‐diphosphoglucose concentration and the amylose content of starch in developing pea embryos publication-title: Planta – volume: 14 start-page: 1767 year: 2002 end-page: 1785 article-title: Discrete forms of amylose are synthesized by isoforms of GBSSI in pea publication-title: Plant Cell – volume: 76 start-page: 1591 year: 2012 end-page: 1595 article-title: Interdomain disulfide bridge in the rice Granule Bound Starch Synthase I catalytic domain as elucidated by X‐ray structure analysis publication-title: Bioscience, Biotechnology, and Biochemistry – volume: 88 start-page: 103 year: 2012 end-page: 111 article-title: Amylose content in starches: toward optimal definition and validating experimental methods publication-title: Carbohydrate Polymers – volume: 4 year: 2018 article-title: Accelerated breeding of GBSS‐ and PTST1‐edited cassava for modified starch. publication-title: Advances – volume: 101 start-page: 237 year: 1993 end-page: 243 article-title: Localization of branching enzyme in potato tuber cells with the use of immunoelectron microscopy publication-title: Plant Physiology – volume: 196 start-page: 702 year: 2016 end-page: 711 article-title: The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains publication-title: Food Chemistry – volume: 282 start-page: 247 year: 1996 end-page: 62 article-title: The chemical structure of amylose and amylopectin fractions of starch from tobacco leaves during development and diurnally‐nocturnally publication-title: Carbohydrate Research – volume: 9 start-page: 1 year: 2018 end-page: 19 article-title: Crystal structures of the catalytic domain of starch synthase IV, of granule bound starch synthase from and of granule bound starch synthase I of illustrate substrate recognition in starch synthases publication-title: Frontiers in Plant Science – volume: 30 start-page: 3952 year: 1997 end-page: 3954 article-title: Crystalline ultrastructure of starch granules revealed by synchrotron radiation microdiffraction mapping publication-title: Macromolecules – volume: 73 start-page: 2781 year: 2016 end-page: 2807 article-title: Formation of starch in plant cells publication-title: Cellular and Molecular Life Sciences – volume: 274 start-page: 131 year: 2005 end-page: 140 article-title: Diverse origins of waxy foxtail millet crops in East and Southeast Asia mediated by multiple transposable element insertions publication-title: Molecular Genetics and Genomics – volume: 20 start-page: 3448 year: 2008 end-page: 3466 article-title: Starch granule biosynthesis in Arabidopsis is abolished by removal of all debranching enzymes but restored by the subsequent removal of an endoamylase publication-title: Plant Cell – volume: 18 start-page: 2096 year: 2020 end-page: 2108 article-title: Non‐GMO potato lines, synthesizing increased amylose and resistant starch, are mainly deficient in isoamylase debranching enzyme publication-title: Plant Biotechnology Journal – volume: 69 start-page: 1013 year: 2013 end-page: 1025 article-title: Structure of starch synthase I from barley: insight into regulatory mechanisms of starch synthase activity publication-title: Acta crystallographica. Section D, Biological Crystallography – volume: 64 start-page: 185 year: 1989 end-page: 192 article-title: Molecular cloning and partial characterization of the gene for granule‐bound starch synthase from a wildtype and an amylose‐free potato ( L.) publication-title: Plant Science – volume: 273 start-page: 22232 year: 1998 end-page: 22240 article-title: Amylose is synthesised in vitro by extention of and cleavage from amylopectin publication-title: Journal of Biological Chemistry – volume: 25 start-page: 623 year: 2010 end-page: 635 article-title: Waxy strains of three amaranth grains raised by different mutations in the coding region publication-title: Molecular Breeding – volume: 81 start-page: 611 year: 2004 end-page: 620 article-title: Structural properties of starch fractions isolated from normal and mutant corn genotypes using different methods publication-title: Cereal Chemistry – volume: 104 start-page: 1449 year: 1994 end-page: 1453 article-title: Expression of branching enzyme I of maize endosperm in publication-title: Plant Physiology – volume: 7 start-page: 613 year: 1995 end-page: 622 article-title: Post‐transcriptional regulation of the gene publication-title: The Plant Journal – volume: 8 start-page: 120 year: 2008 article-title: Arabidopsis At5g39790 encodes a chloroplast‐localized, carbohydrate‐binding, coiled‐coil domain‐containing putative scaffold protein publication-title: BMC Plant Biology – volume: 266 start-page: 724 year: 1999 end-page: 736 article-title: Specificity of starch synthase isoforms from potato publication-title: European Journal of Biochemistry – volume: 60 start-page: 115 year: 1990 end-page: 122 article-title: The wrinkled‐seed character of pea described by Mendel is caused by a transposon‐like insertion in a gene encoding starch‐branching enzyme publication-title: Cell – volume: 4 start-page: 191 year: 1993 end-page: 198 article-title: Soluble isoforms of starch synthase and starch branching enzyme also occur within starch granules in developing pea embryos publication-title: The Plant Journal – volume: 7 start-page: 40124 year: 2017 article-title: encodes an ADP‐glucose transporter involved in starch synthesis and compound granule formation in rice endosperm publication-title: Scientific Reports – volume: 8 start-page: 1353 year: 1996 end-page: 1366 article-title: Preamylopectin processing: a mandatory step for starch biosynthesis in plants publication-title: Plant Cell – volume: 70 start-page: 171 year: 1993 end-page: 179 article-title: Characterization of starch structures of 17 maize endosperm mutant genotypes with Oh43 inbred line background publication-title: Cereal Chemistry – volume: 340 start-page: 183 year: 1999b end-page: 191 article-title: Granule‐bound starch synthase I in isolated starch granules elongates malto‐oligosaccharides processively publication-title: Biochemical Journal – volume: 55 start-page: 7469 year: 2007 end-page: 7476 article-title: Discovery of an amylose‐free starch mutant in cassava ( Crantz) publication-title: Journal of Agricultural and Food Chemistry – volume: 46 start-page: 299 year: 1970 end-page: 306 article-title: Enzymes of carbohydrate metabolism in the developing endosperm of maize publication-title: Plant Physiology – volume: 43 start-page: 398 year: 2005 end-page: 412 article-title: Soluble starch synthase I: a major determinant for the synthesis of amylopectin in leaves publication-title: The Plant Journal – volume: 7 year: 2012 article-title: Diversification of genes encoding granule‐bound starch synthase in monocots and dicots is marked by multiple genome‐wide duplication events publication-title: PLoS ONE – volume: 63 start-page: 5859 year: 2012 end-page: 5872 article-title: Elongated phytoglycogen chain length in transgenic rice endosperm expressing active starch synthase IIa affects the altered solubility and crystallinity of the storage α‐glucan publication-title: Journal of Experimental Botany – volume: 62 start-page: 4443 year: 2014 end-page: 4453 article-title: Variation in amylose fine structure of starches from different botanical sources publication-title: Journal of Agricultural and Food Chemistry – volume: 25 start-page: 536 year: 2008 end-page: 548 article-title: Metabolic symbiosis and the birth of the plant kingdom publication-title: Molecular Biology and Evolution – volume: 30 start-page: 1523 year: 2018 end-page: 1542 article-title: Two plastidial coiled‐coil proteins are essential for normal starch granule initiation in Arabidopsis publication-title: Plant Cell – volume: 330 start-page: 249 year: 2001 end-page: 256 article-title: Internal structure of the starch granule revealed by AFM publication-title: Carbohydrate Research – volume: 12 start-page: 1157 year: 2019 end-page: 1166 article-title: , the ancestral allele of rice gene publication-title: Molecular Plant – volume: 111 start-page: 821 year: 1996 end-page: 829 article-title: Physical association of starch biosynthetic enzymes with starch granules of maize endosperm (granule‐associated forms of starch synthase I and starch branching enzyme II) publication-title: Plant Physiology – volume: 129 start-page: 516 year: 2002b end-page: 529 article-title: Starch synthesis in Arabidopsis. Granule synthesis, composition, and structure publication-title: Plant Physiology – volume: 6 start-page: 43 year: 1994a end-page: 52 article-title: Formation and deposition of amylose in the potato tuber starch granule are affected by the reduction of gene expression publication-title: Plant Cell – volume: 53 start-page: 504 year: 2001 end-page: 512 article-title: Scattering studies of the internal structure of starch granules publication-title: Starch/Staerke – volume: 18 start-page: 362 year: 2019a end-page: 379 article-title: High‐amylose starches to bridge the “fiber gap”: Development, structure, and nutritional functionality publication-title: Comprehensive Reviews in Food Science and Food Safety – volume: 448 start-page: 373 year: 2012b end-page: 387 article-title: Glucan affinity of starch synthase IIa determines binding of starch synthase I and starch‐branching enzyme IIb to starch granules publication-title: Biochemical Journal – volume: 39 start-page: 52 year: 1987 end-page: 56 article-title: Acceptor molecule of granular‐bound starch synthase from sweet‐potato roots publication-title: Starch – Stärke – volume: 174 start-page: 3612 year: 1992 end-page: 3620 article-title: Waxy : monocellular algal mutants defective in amylose biosynthesis and granule‐bound starch synthase activity accumulate a structurally modified amylopectin publication-title: Journal of Bacteriology – volume: 61 start-page: 209 year: 2010 end-page: 234 article-title: Starch: its metabolism, evolution, and biotechnological modification in plants publication-title: Annual Review of Plant Biology – volume: 21 start-page: 2443 year: 2009 end-page: 2457 article-title: Starch granule initiation in Arabidopsis requires the presence of either class IV or class III starch synthases publication-title: The Plant Cell – volume: 54 start-page: 207 year: 2003 end-page: 233 article-title: From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule publication-title: Annual Review of Plant Biology – volume: 6 start-page: 1 year: 2016 end-page: 17 article-title: biochemical characterization of all barley endosperm starch synthases publication-title: Frontiers in Plant Science – year: 1909 – volume: 63 start-page: 1167 year: 2012a end-page: 1183 article-title: Allelic variants of the amylose extender mutation of maize demonstrate phenotypic variation in starch structure resulting from modified protein‐protein interactions publication-title: Journal of Experimental Botany – volume: 20 start-page: 1566 year: 1997 end-page: 1572 article-title: Two isoforms of the GBSSI class of granule‐bound starch synthase are differentially expressed in the pea plant ( L.) publication-title: Plant, Cell & Environment – volume: 92 start-page: 121 year: 1996 end-page: 127 article-title: The dosage effect of the wildtype GBSS allele is linear for GBSS activity but not for amylose content: absence of amylose has a distinct influence on the physico‐chemical properties of starch publication-title: Theoretical and Applied Genetics – volume: 80 start-page: 305 year: 2014 end-page: 316 article-title: Starch synthase 4 is located in the thylakoid membrane and interacts with plastoglobule‐associated proteins in Arabidopsis publication-title: The Plant Journal – volume: 62 start-page: 4927 year: 2011 end-page: 4941 article-title: Impact of down‐regulation of starch branching enzyme IIb in rice by artificial microRNA‐and hairpin RNA‐mediated RNA silencing publication-title: Journal of Experimental Botany – volume: 182 start-page: 870 year: 2020 end-page: 881 article-title: Natural polymorphisms in Arabidopsis result in wide variation or loss of the amylose component of starch publication-title: Plant Physiology – volume: 122 start-page: 255 year: 2000 end-page: 264 article-title: Wheat granule‐bound starch synthase I and II are encoded by separate genes that are expressed in different tissues publication-title: Plant Physiology – volume: 125 start-page: 1723 year: 2001 end-page: 1731 article-title: Biochemical characterization of wild‐type and mutant isoamylases of supports a function of the multimeric enzyme organization in amylopectin maturation publication-title: Plant Physiology – volume: 127 start-page: 459 year: 2001 end-page: 472 article-title: Biochemical and genetic analysis of the effects of amylose‐extender mutation in rice endosperm publication-title: Plant Physiology – volume: 11 start-page: 83 year: 1974 end-page: 96 article-title: The function of the locus in starch synthesis in maize endosperm publication-title: Biochemical Genetics – volume: 59 start-page: 196 year: 2014 end-page: 202 article-title: Use of advanced recombinant lines to study the impact and potential of mutations affecting starch synthesis in barley publication-title: Journal of Cereal Science – volume: 68 start-page: 931 year: 2017 end-page: 941 article-title: Waxy and non‐waxy barley cultivars exhibit differences in the targeting and catalytic activity of GBSS1a publication-title: Journal of Experimental Botany – volume: 12 start-page: 396 year: 1921 end-page: 400 article-title: Waxy endosperm in and sorghum publication-title: Journal of Heredity – volume: 278 start-page: 47803 year: 2003 end-page: 47811 article-title: An interaction between a MYC protein and an EREBP protein is involved in transcriptional regulation of the rice gene publication-title: Journal of Biological Chemistry – volume: 186 start-page: 609 year: 1992 end-page: 617 article-title: The purification and characterisation of the two forms of soluble starch synthase from developing pea embryos publication-title: Planta – volume: 81 start-page: 1031 year: 2001 end-page: 1064 article-title: Short‐chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides publication-title: Physiological Reviews – volume: 40 start-page: 327 year: 2006 end-page: 331 article-title: Waxy and low‐amylose mutants of bread wheat ( L.) and their starch, flour and grain properties publication-title: Japan Agricultural Research Quarterly – volume: 51 start-page: 949 year: 2003 end-page: 58 article-title: Oscillation of mRNA level and activity of granule‐bound starch synthase I in Arabidopsis leaves during the day/night cycle publication-title: Plant Molecular Biology – volume: 49 start-page: 492 year: 2007 end-page: 504 article-title: The phenotype of soluble starch synthase IV defective mutants of suggests a novel function of elongation enzymes in the control of starch granule formation publication-title: The Plant Journal – volume: 46 start-page: 341 year: 1994 end-page: 346 article-title: Holes in starch granules: Confocal, SEM and light microscopy studies of starch granule structure publication-title: Starch – Stärke – volume: 7 start-page: 247 year: 2008 end-page: 257 article-title: Pathway of cytosolic starch synthesis in the model glaucophyte publication-title: Eukaryotic Cell – volume: 16 start-page: 694 year: 2004 end-page: 708 article-title: Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein–protein interactions publication-title: Plant Cell – volume: 24 start-page: 257 year: 1933 end-page: 262 article-title: Inheritance of waxy endosperm in sorghum publication-title: Journal of Heredity – volume: 67 start-page: 209 year: 1976 end-page: 214 article-title: Interaction of the amylose‐extender and waxy mutants of maize: dosage effects publication-title: Journal of Heredity – ident: e_1_2_13_48_1 doi: 10.1002/1521-379X(200110)53:10<504::AID-STAR504>3.0.CO;2-5 – volume: 653 start-page: 647 year: 1999 ident: e_1_2_13_43_1 article-title: Interaction with amylopectin influences the ability of granule‐bound starch synthase I to elongate malto‐oligosaccharides publication-title: Biochemical Journal doi: 10.1042/bj3420647 – volume: 9 start-page: 1 year: 2018 ident: e_1_2_13_111_1 article-title: Crystal structures of the catalytic domain of Arabidopsis thaliana starch synthase IV, of granule bound starch synthase from CLg1 and of granule bound starch synthase I of Cyanophora paradoxa illustrate substrate recognition in starch synthases publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2018.01138 – ident: e_1_2_13_5_1 doi: 10.1002/star.19870390207 – ident: e_1_2_13_17_1 doi: 10.1126/sciadv.aat6086 – ident: e_1_2_13_172_1 doi: 10.1073/pnas.82.12.4177 – ident: e_1_2_13_134_1 doi: 10.1105/tpc.17.00222 – ident: e_1_2_13_59_1 doi: 10.1111/tpj.12633 – ident: e_1_2_13_87_1 doi: 10.1007/s10973-006-7880-z – ident: e_1_2_13_161_1 doi: 10.1002/star.19970491103 – ident: e_1_2_13_164_1 doi: 10.1093/jxb/ert187 – ident: e_1_2_13_33_1 doi: 10.1107/S090744491300440X – ident: e_1_2_13_76_1 doi: 10.1002/star.19940460402 – ident: e_1_2_13_113_1 doi: 10.1093/oxfordjournals.jhered.a109700 – ident: e_1_2_13_174_1 doi: 10.1146/annurev-arplant-042809-112301 – ident: e_1_2_13_100_1 doi: 10.1186/1471-2229-8-120 – ident: e_1_2_13_125_1 doi: 10.1073/pnas.0510737103 – volume: 22 start-page: 271 year: 2010 ident: e_1_2_13_127_1 article-title: Progress in Arabidopsis starch research and potential biotechnological applications publication-title: Current Opinion in Biotechnology doi: 10.1016/j.copbio.2010.11.014 – ident: e_1_2_13_39_1 doi: 10.1046/j.1365-313X.1996.10061135.x – ident: e_1_2_13_140_1 doi: 10.1007/BF02341037 – ident: e_1_2_13_129_1 doi: 10.1105/tpc.19.00089 – ident: e_1_2_13_116_1 doi: 10.1021/bm990016l – ident: e_1_2_13_156_1 doi: 10.1094/CCHEM.2004.81.5.611 – ident: e_1_2_13_171_1 doi: 10.1002/star.201300238 – ident: e_1_2_13_29_1 doi: 10.5962/bhl.title.37128 – ident: e_1_2_13_38_1 doi: 10.1046/j.1365-3040.1997.d01-48.x – ident: e_1_2_13_51_1 doi: 10.1105/tpc.002907 – ident: e_1_2_13_31_1 doi: 10.1046/j.1365-313x.2001.01012.x – ident: e_1_2_13_63_1 doi: 10.1093/jxb/ern198 – ident: e_1_2_13_95_1 doi: 10.1016/j.plantsci.2013.05.019 – ident: e_1_2_13_64_1 doi: 10.1104/pp.104.4.1449 – ident: e_1_2_13_126_1 doi: 10.1111/j.1365-313X.2006.02968.x – ident: e_1_2_13_73_1 doi: 10.5458/jag.52.239 – ident: e_1_2_13_138_1 doi: 10.1371/journal.pbio.1002080 – ident: e_1_2_13_154_1 doi: 10.1104/pp.46.2.299 – ident: e_1_2_13_92_1 doi: 10.1111/1541-4337.12416 – ident: e_1_2_13_90_1 doi: 10.1007/BF00019490 – ident: e_1_2_13_89_1 doi: 10.2307/3869673 – ident: e_1_2_13_112_1 doi: 10.1104/pp.010127 – ident: e_1_2_13_9_1 doi: 10.3390/agronomy7030056 – ident: e_1_2_13_37_1 doi: 10.1111/j.1365-313X.2005.02462.x – ident: e_1_2_13_79_1 doi: 10.1016/0141-8130(96)81838-1 – ident: e_1_2_13_86_1 doi: 10.1016/j.ijbiomac.2007.07.005 – ident: e_1_2_13_4_1 doi: 10.1271/bbb1961.49.1973 – volume: 48 start-page: 1763 year: 1984 ident: e_1_2_13_3_1 article-title: Structural characterization of amylopectin and intermediate material in amylomaize starch granules publication-title: Agricultural and Biological Chemistry – ident: e_1_2_13_85_1 doi: 10.1007/s11248-011-9507-9 – ident: e_1_2_13_114_1 doi: 10.1093/genetics/162.2.941 – ident: e_1_2_13_35_1 doi: 10.1104/pp.125.4.1723 – ident: e_1_2_13_50_1 doi: 10.1046/j.1432-1327.1999.00861.x – ident: e_1_2_13_10_1 doi: 10.1016/0092-8674(90)90721-P – ident: e_1_2_13_166_1 doi: 10.1016/j.carbpol.2015.03.081 – ident: e_1_2_13_60_1 doi: 10.1016/S0008-6215(00)80215-3 – ident: e_1_2_13_19_1 doi: 10.1093/jxb/err188 – ident: e_1_2_13_118_1 doi: 10.1007/s11032-009-9360-1 – ident: e_1_2_13_109_1 doi: 10.1104/pp.118.2.451 – ident: e_1_2_13_45_1 doi: 10.1093/molbev/msm280 – ident: e_1_2_13_173_1 doi: 10.6090/jarq.40.327 – ident: e_1_2_13_101_1 doi: 10.1002/bip.21005 – ident: e_1_2_13_83_1 doi: 10.1007/s00438-005-0013-8 – ident: e_1_2_13_136_1 doi: 10.1105/tpc.18.00219 – ident: e_1_2_13_131_1 doi: 10.1186/1756-0500-6-84 – ident: e_1_2_13_145_1 doi: 10.1105/tpc.109.066522 – volume: 62 start-page: 948 year: 2019 ident: e_1_2_13_168_1 article-title: GBSS‐BINDING PROTEIN, encoding a CBM48 domain‐containing protein, affects rice quality and yield publication-title: Journal of Integrative Plant Biology doi: 10.1111/jipb.12866 – ident: e_1_2_13_68_1 doi: 10.1093/jxb/erw503 – ident: e_1_2_13_119_1 doi: 10.1104/pp.005454 – ident: e_1_2_13_122_1 doi: 10.1007/s00018-016-2250-x – ident: e_1_2_13_177_1 doi: 10.1016/j.molp.2019.05.011 – ident: e_1_2_13_105_1 doi: 10.1002/j.2050-0416.1969.tb03194.x – ident: e_1_2_13_144_1 doi: 10.1093/pcp/pcs190 – ident: e_1_2_13_6_1 doi: 10.1016/S0008-6215(00)00275-5 – ident: e_1_2_13_88_1 doi: 10.1104/pp.101.1.237 – ident: e_1_2_13_179_1 doi: 10.1186/1471-2229-8-96 – ident: e_1_2_13_80_1 doi: 10.1016/j.pbi.2003.12.001 – ident: e_1_2_13_147_1 doi: 10.1016/j.carbpol.2018.09.078 – ident: e_1_2_13_70_1 doi: 10.1007/BF00249167 – ident: e_1_2_13_2_1 doi: 10.1105/tpc.19.00946 – ident: e_1_2_13_16_1 doi: 10.1021/ma970136q – ident: e_1_2_13_139_1 doi: 10.1007/s10126-006-6104-7 – ident: e_1_2_13_110_1 doi: 10.1007/BF02191591 – ident: e_1_2_13_151_1 doi: 10.1046/j.1365-313x.1998.00317.x – ident: e_1_2_13_106_1 doi: 10.1271/bbb.120305 – ident: e_1_2_13_162_1 doi: 10.1104/pp.122.1.255 – ident: e_1_2_13_141_1 doi: 10.1104/pp.104.044347 – ident: e_1_2_13_77_1 doi: 10.1016/0008-6215(93)84260-D – ident: e_1_2_13_23_1 doi: 10.1104/pp.63.5.973 – ident: e_1_2_13_18_1 doi: 10.1002/star.201200211 – ident: e_1_2_13_46_1 doi: 10.1128/EC.00380-05 – ident: e_1_2_13_28_1 doi: 10.1104/pp.120.4.993 – ident: e_1_2_13_40_1 doi: 10.1078/0176-1617-00360 – ident: e_1_2_13_58_1 doi: 10.1104/pp.107.102533 – ident: e_1_2_13_128_1 doi: 10.1093/mp/sst131 – ident: e_1_2_13_72_1 doi: 10.1093/molbev/msq040 – ident: e_1_2_13_102_1 doi: 10.1016/0008-6215(95)00381-9 – ident: e_1_2_13_13_1 doi: 10.1093/oxfordjournals.jhered.a108711 – ident: e_1_2_13_26_1 doi: 10.1371/journal.pone.0030088 – ident: e_1_2_13_54_1 doi: 10.1105/tpc.16.00011 – ident: e_1_2_13_155_1 doi: 10.1111/pbi.13137 – volume: 70 start-page: 171 year: 1993 ident: e_1_2_13_169_1 article-title: Characterization of starch structures of 17 maize endosperm mutant genotypes with Oh43 inbred line background publication-title: Cereal Chemistry – ident: e_1_2_13_104_1 doi: 10.1111/j.1469-8137.1981.tb04568.x – ident: e_1_2_13_94_1 doi: 10.1038/srep40124 – ident: e_1_2_13_99_1 doi: 10.1093/jxb/47.2.171 – ident: e_1_2_13_24_1 doi: 10.1002/star.200600515 – ident: e_1_2_13_149_1 doi: 10.1023/A:1023053420632 – ident: e_1_2_13_130_1 doi: 10.1038/75427 – ident: e_1_2_13_65_1 doi: 10.1104/pp.102.4.1269 – ident: e_1_2_13_135_1 doi: 10.1104/pp.19.01062 – ident: e_1_2_13_153_1 doi: 10.1007/BF00485766 – volume: 7 start-page: 117 year: 2016 ident: e_1_2_13_142_1 article-title: Improving waxy maize, the heritage of South East Asia publication-title: International Journal of Environmental and Rural Development – volume: 16 start-page: 70 year: 1963 ident: e_1_2_13_103_1 article-title: Diurnal‐nocturnal changes in the starch of tobacco leaves publication-title: Australian Journal of Biological Sciences doi: 10.1071/BI9630070 – volume: 60 start-page: 172 year: 2016 ident: e_1_2_13_52_1 article-title: Variation and geographical distribution of perisperm starch in grain Amaranths (Amaranthus spp.), and the origin of waxy perisperm type publication-title: Tropical Agriculture and Development – ident: e_1_2_13_107_1 doi: 10.2307/3870306 – ident: e_1_2_13_74_1 doi: 10.1093/pcp/pcg068 – ident: e_1_2_13_75_1 doi: 10.1094/CCHEM.1999.76.5.629 – ident: e_1_2_13_61_1 doi: 10.1094/CCHEM-11-12-0141-FI – ident: e_1_2_13_53_1 doi: 10.1007/s11032-008-9178-2 – volume: 12 start-page: 396 year: 1921 ident: e_1_2_13_84_1 article-title: Waxy endosperm in Coix and sorghum publication-title: Journal of Heredity doi: 10.1093/oxfordjournals.jhered.a102131 – ident: e_1_2_13_150_1 doi: 10.1105/tpc.017400 – ident: e_1_2_13_152_1 doi: 10.1152/physrev.2001.81.3.1031 – volume: 71 start-page: 282 year: 1994 ident: e_1_2_13_82_1 article-title: Location of amylose in normal starch granules. II: Locations of phosphodiester cross‐linking revealed by phosphorus‐31 nuclear magnetic resonance publication-title: Cereal Chemistry – ident: e_1_2_13_148_1 doi: 10.1046/j.1365-3040.1999.00437.x – ident: e_1_2_13_97_1 doi: 10.1042/BJ20120573 – ident: e_1_2_13_32_1 doi: 10.5458/jag.jag.JAG-2018_005 – ident: e_1_2_13_15_1 doi: 10.1016/j.bbagen.2013.08.029 – ident: e_1_2_13_30_1 doi: 10.1016/S0065-2113(08)60859-7 – ident: e_1_2_13_67_1 doi: 10.5458/jag.52.233 – ident: e_1_2_13_115_1 doi: 10.1105/tpc.114.122721 – ident: e_1_2_13_178_1 doi: 10.1111/jipb.12620 – ident: e_1_2_13_8_1 doi: 10.1146/annurev.arplant.54.031902.134927 – ident: e_1_2_13_7_1 doi: 10.1002/star.19940460906 – ident: e_1_2_13_14_1 doi: 10.5458/jag.jag.JAG-2012_018 – ident: e_1_2_13_47_1 doi: 10.1007/s00425-003-1101-9 – volume: 24 start-page: 257 year: 1933 ident: e_1_2_13_81_1 article-title: Inheritance of waxy endosperm in sorghum publication-title: Journal of Heredity doi: 10.1093/oxfordjournals.jhered.a103794 – volume: 71 start-page: 1 year: 2019 ident: e_1_2_13_91_1 article-title: The role of pullulanase in starch biosynthesis, structure, and thermal properties by studying sorghum with increased pullulanase activity publication-title: Starch/Staerke – ident: e_1_2_13_36_1 doi: 10.1128/jb.174.11.3612-3620.1992 – ident: e_1_2_13_137_1 doi: 10.1093/jxb/ery412 – ident: e_1_2_13_98_1 doi: 10.1007/s004250050627 – ident: e_1_2_13_108_1 doi: 10.1104/pp.111.3.821 – ident: e_1_2_13_167_1 doi: 10.1016/j.carbpol.2011.09.093 – ident: e_1_2_13_180_1 doi: 10.1093/jxb/ery398 – ident: e_1_2_13_21_1 doi: 10.1021/bm900426n – ident: e_1_2_13_20_1 doi: 10.1186/1471-2229-12-223 – ident: e_1_2_13_71_1 doi: 10.1016/j.jcs.2013.12.012 – ident: e_1_2_13_96_1 doi: 10.1093/jxb/err341 – ident: e_1_2_13_175_1 doi: 10.1104/pp.010640 – volume: 62 start-page: 832 year: 2019 ident: e_1_2_13_181_1 article-title: Production of very‐high‐amylose cassava by post‐transcriptional silencing of branching enzyme genes publication-title: Journal of Integrative Plant Biology doi: 10.1111/jipb.12848 – ident: e_1_2_13_133_1 doi: 10.1111/j.1439-0523.2012.02004.x – ident: e_1_2_13_56_1 doi: 10.1007/BF00222961 – ident: e_1_2_13_57_1 doi: 10.1093/jxb/ers235 – start-page: 222 year: 1962 ident: e_1_2_13_62_1 article-title: Physicochemical studies on starches. Part XXIV. The fractionation and characterization of starches of various plant origins publication-title: Journal of the Chemical Society doi: 10.1039/jr9620000222 – ident: e_1_2_13_55_1 doi: 10.1007/BF00223647 – ident: e_1_2_13_22_1 doi: 10.1021/jf070633y – ident: e_1_2_13_27_1 doi: 10.1007/s004250050639 – ident: e_1_2_13_143_1 doi: 10.1105/tpc.108.063487 – ident: e_1_2_13_157_1 doi: 10.1074/jbc.271.27.16281 – ident: e_1_2_13_25_1 doi: 10.1186/s12870-017-1118-z – ident: e_1_2_13_93_1 doi: 10.1016/j.foodchem.2015.09.112 – ident: e_1_2_13_49_1 doi: 10.1046/j.1365-313X.1992.t01-42-00999.x – ident: e_1_2_13_120_1 doi: 10.1007/s10681-005-5298-5 – ident: e_1_2_13_11_1 doi: 10.1016/j.jsb.2003.08.009 – ident: e_1_2_13_44_1 doi: 10.1042/0264-6021:3400183 – ident: e_1_2_13_160_1 doi: 10.1016/0168-9452(89)90023-X – ident: e_1_2_13_170_1 doi: 10.1046/j.1365-313X.1995.7040613.x – ident: e_1_2_13_117_1 doi: 10.1007/s00239-009-9300-z – ident: e_1_2_13_158_1 doi: 10.1094/CCHEM.2004.81.3.377 – ident: e_1_2_13_146_1 doi: 10.1016/0008-6215(87)80008-3 – ident: e_1_2_13_42_1 doi: 10.1007/BF00198043 – ident: e_1_2_13_121_1 doi: 10.1016/j.carbpol.2018.05.049 – ident: e_1_2_13_176_1 doi: 10.1104/pp.003756 – ident: e_1_2_13_182_1 doi: 10.1074/jbc.M302806200 – ident: e_1_2_13_124_1 doi: 10.1104/pp.106.081885 – ident: e_1_2_13_41_1 doi: 10.1046/j.1365-313X.1993.04010191.x – ident: e_1_2_13_12_1 doi: 10.1111/pbi.13367 – volume: 69 start-page: 405 year: 1992 ident: e_1_2_13_78_1 article-title: Location of amylose in normal starch granules. I: Susceptibility of amylose and amylopectin to cross‐linking reagents publication-title: Cereal Chemistry – ident: e_1_2_13_66_1 doi: 10.1093/pcp/pcn066 – ident: e_1_2_13_132_1 doi: 10.1016/j.cub.2009.01.044 – ident: e_1_2_13_123_1 doi: 10.1128/EC.00373-07 – ident: e_1_2_13_34_1 doi: 10.3389/fpls.2015.01265 – ident: e_1_2_13_159_1 doi: 10.1016/j.carbpol.2011.11.072 – volume: 9 start-page: 1 year: 2018 ident: e_1_2_13_69_1 article-title: Proteome analysis of potato starch reveals the presence of new starch metabolic proteins as well as multiple protease inhibitors publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2018.00746 – ident: e_1_2_13_165_1 doi: 10.1021/jf5011676 – ident: e_1_2_13_163_1 doi: 10.1074/jbc.273.35.22232 |
SSID | ssj0009562 |
Score | 2.671967 |
SecondaryResourceType | review_article |
Snippet | Starch granules are composed of two distinct glucose polymers – amylose and amylopectin. Amylose constitutes 5–35% of most natural starches and has a major... Summary Starch granules are composed of two distinct glucose polymers – amylose and amylopectin. Amylose constitutes 5–35% of most natural starches and has a... Starch granules are composed of two distinct glucose polymers - amylose and amylopectin. Amylose constitutes 5-35% of most natural starches and has a major... |
SourceID | proquest pubmed crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1490 |
SubjectTerms | Amylopectin Amylose Analytical methods Biosynthesis carbohydrate Fine structure Glucans glucose Glucosyltransferase Granular materials GRANULE BOUND STARCH SYNTHASE (GBSS) Polymers Questions Starch starch granules Starch synthase Starch Synthase - genetics starch synthesis Starches Storage Structure-function relationships Tansley review Ultrastructure Wild plants |
Subtitle | towards an understanding of biosynthesis, structure and function |
Title | Amylose in starch |
URI | https://www.jstor.org/stable/26968196 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.16858 https://www.ncbi.nlm.nih.gov/pubmed/32767769 https://www.proquest.com/docview/2456707181 https://www.proquest.com/docview/2431825120 https://www.proquest.com/docview/2561550674 |
Volume | 228 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RxKGXUmhpQwGZqocemlXiOHbSnigCrTggBEXaQ6XIztrqqiVBZPcAv54Z56GlohXiFiljyfY8_Nkz_gzwSWRTk5tYhJkw01DkwoU65WmYGZE4KTnR8FG1xakcX4qTSTpZgW_9XZiWH2I4cCPP8PGaHFybZsnJq-tfo5jY0zH-Uq0WAaJzvkS4K3nPwCyFnHSsQlTFM7R8sBa15YiPAc2HuNUvPMfr8LPvcltv8nu0mJtRefcXm-Mzx_QaXnWAlB20FrQBK7bahLXvNYLG2zdwcXCFO_rGslnFEEeiU3xlc19p2zBdscXy1RhWO2ZmdXNbIahsZs0X1pLTLm4syk4ZLaFkBm_h8vjox-E47N5hCEshMB7GNp_KXJlIoz4RMCnOlZNlJKOEsnIm09oYmzqhnObO5qnNUmFR2AoZa4Q8W7Ba1ZV9DyxyCMCSMtI6x52d0Rm2sKnSiTKZyxMbwOdeI0XZkZTTWxl_in6zglNU-CkK4OMget0yczwmtOXVOkhwIgPCqBPATq_novPapqAksELMlcUB7A-_0d8oiaIrWy9IBqMggcLoPzIpZXsRB4gA3rU2NHQg4UoqJXMcqbeEf_e9OD0b-4_tp4t-gJecDgR8vc0OrKKa7S6iprnZgxdcnO15J7kHuqYSjA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VgkQv_LcEChgEEgeyShzHTpA4FEq1pWWFoJX2FuysLVaUpCK7Qttn6qvwTszkT1tUEJceuEXKJBrbM-PPnvFngKcimZjUhMJPhJn4IhXO1zGP_cSIyEnJiYaPqi1Gcngo3o3j8QqcdmdhGn6IfsONPKOO1-TgtCG95OXF8ZdBSPTpbUnlnl38wAVb9Wp3G0f3Gec7bw_eDP32TgE_FwJ9O7TpRKbKBBp1w8lfca6czAMZRJRhMonWxtjYCeU0dzaNbRILi8JWyFDj9I3_vQSX6QZxYurf_siXKH4l7zifpZDjlseI6oZ6Vc_Mfk0B5HnQ9ixSrqe6nevws-ukpsLl62A-M4P85Df-yP-lF2_AtRZzs63GSW7Cii1uwZXXJeLixW34tPVtcVRWlk0LhlAZlXvJZnUxccV0webLp39Y6ZiZltWiQNxcTasXrOHfnX-3KDthhBLI0u_A4YU0aB1Wi7Kwd4EFDjFmlAdap7h4NTrBL2ysdKRM4tLIevC8M4Esb3nY6TqQo6xbj-GQZPWQePCkFz1uyEfOE1qv7aiX4MR3hIHVg83OsLI2MFUZ5bkVwsok9OBx_xpDCuWJdGHLOclgoCfcG_xFJqaENkId4cFGY7S9AhFXUimZYktr0_uz7tnow7B-uPfvoo_g6vDg_X62vzvauw9rnPY_6vKiTVjFIbcPECTOzMPaNxl8vmgz_gXoI295 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qFfGl1I9qatVVFHwwkmw2u0nBh2o9rlaOAy3cW7p72cUDTQ7TQ-5v8p90ZvPBFar40rdAJmEys7Pz253ZXwBeiqw0uYlFmAlThiIXLtQpT8PMiMRJyYmGj7otJnJ8Jj7N0tkW_O7PwrT8EMOGG0WGn68pwJel2wjyavntbUzs6V1H5ald_8L1WvPu5Bid-4rz0cevH8Zh90uBcC4EhnZs81LmykQaVcPcrzhXTs4jGSVUYDKZ1sbY1AnlNHc2T22WCovCVshYY_bG996Am1RcpP4xLqYbDL-S95TPUshZR2NEbUODqpeSX9v_eBWyvQyUfaYb7cJOB1HZUTum7sKWre7Brfc1wsj1ffhy9APX-I1li4ohskSTHLIL33vbMF2x1eZhGVY7ZhZ1s64QZjaL5g1r6WpXPy3KloySKg2MB3B2LWbcg-2qruwjYJFDSJbMI61zXOsZneETNlU6USZzeWIDeN2brJh3tOX094zvRb98QesW3roBvBhEly1Xx1VCe97ugwQneiCchwI46B1RdHHcFFQWVojCsjiA58NtjEAqq-jK1iuSwXmRYGL0D5mU6r-IDEQAD1snDwokXEmlZI5f6r3-d92LyXTsL_b_X_QZ3J4ej4rPJ5PTx3CH026Bb8Y5gG30uH2CkOrCPPVDmcH5dcfOH7xKLe4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amylose+in+starch%3A+towards+an+understanding+of+biosynthesis%2C+structure+and+function&rft.jtitle=The+New+phytologist&rft.au=Seung%2C+David&rft.date=2020-12-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=228&rft.issue=5&rft.spage=1490&rft.epage=1504&rft_id=info:doi/10.1111%2Fnph.16858&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_nph_16858 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |