Amylose in starch towards an understanding of biosynthesis, structure and function

Starch granules are composed of two distinct glucose polymers – amylose and amylopectin. Amylose constitutes 5–35% of most natural starches and has a major influence over starch properties in foods. Its synthesis and storage occurs within the semicrystalline amylopectin matrix of starch granules, th...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 228; no. 5; pp. 1490 - 1504
Main Author Seung, David
Format Journal Article
LanguageEnglish
Published England Wiley 01.12.2020
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Starch granules are composed of two distinct glucose polymers – amylose and amylopectin. Amylose constitutes 5–35% of most natural starches and has a major influence over starch properties in foods. Its synthesis and storage occurs within the semicrystalline amylopectin matrix of starch granules, this poses a great challenge for biochemical and structural analyses. However, the last two decades have seen vast progress in understanding amylose synthesis, including new insights into the action of GRANULE BOUND STARCH SYNTHASE (GBSS), the major glucosyltransferase that synthesises amylose, and the discovery of PROTEIN TARGETING TO STARCH1 (PTST1) that targets GBSS to starch granules. Advances in analytical techniques have resolved the fine structure of amylose, raising new questions on how structure is determined during biosynthesis. Furthermore, the discovery of wild plants that do not produce amylose revives a long-standing question of why starch granules contain amylose, rather than amylopectin alone. Overall, these findings contribute towards a full understanding of amylose biosynthesis, structure and function that will be essential for future approaches to improve starch quality in crops.
AbstractList Starch granules are composed of two distinct glucose polymers - amylose and amylopectin. Amylose constitutes 5-35% of most natural starches and has a major influence over starch properties in foods. Its synthesis and storage occurs within the semicrystalline amylopectin matrix of starch granules, this poses a great challenge for biochemical and structural analyses. However, the last two decades have seen vast progress in understanding amylose synthesis, including new insights into the action of GRANULE BOUND STARCH SYNTHASE (GBSS), the major glucosyltransferase that synthesises amylose, and the discovery of PROTEIN TARGETING TO STARCH1 (PTST1) that targets GBSS to starch granules. Advances in analytical techniques have resolved the fine structure of amylose, raising new questions on how structure is determined during biosynthesis. Furthermore, the discovery of wild plants that do not produce amylose revives a long-standing question of why starch granules contain amylose, rather than amylopectin alone. Overall, these findings contribute towards a full understanding of amylose biosynthesis, structure and function that will be essential for future approaches to improve starch quality in crops.
Summary Starch granules are composed of two distinct glucose polymers – amylose and amylopectin. Amylose constitutes 5–35% of most natural starches and has a major influence over starch properties in foods. Its synthesis and storage occurs within the semicrystalline amylopectin matrix of starch granules, this poses a great challenge for biochemical and structural analyses. However, the last two decades have seen vast progress in understanding amylose synthesis, including new insights into the action of GRANULE BOUND STARCH SYNTHASE (GBSS), the major glucosyltransferase that synthesises amylose, and the discovery of PROTEIN TARGETING TO STARCH1 (PTST1) that targets GBSS to starch granules. Advances in analytical techniques have resolved the fine structure of amylose, raising new questions on how structure is determined during biosynthesis. Furthermore, the discovery of wild plants that do not produce amylose revives a long‐standing question of why starch granules contain amylose, rather than amylopectin alone. Overall, these findings contribute towards a full understanding of amylose biosynthesis, structure and function that will be essential for future approaches to improve starch quality in crops.
Starch granules are composed of two distinct glucose polymers - amylose and amylopectin. Amylose constitutes 5-35% of most natural starches and has a major influence over starch properties in foods. Its synthesis and storage occurs within the semicrystalline amylopectin matrix of starch granules, this poses a great challenge for biochemical and structural analyses. However, the last two decades have seen vast progress in understanding amylose synthesis, including new insights into the action of GRANULE BOUND STARCH SYNTHASE (GBSS), the major glucosyltransferase that synthesises amylose, and the discovery of PROTEIN TARGETING TO STARCH1 (PTST1) that targets GBSS to starch granules. Advances in analytical techniques have resolved the fine structure of amylose, raising new questions on how structure is determined during biosynthesis. Furthermore, the discovery of wild plants that do not produce amylose revives a long-standing question of why starch granules contain amylose, rather than amylopectin alone. Overall, these findings contribute towards a full understanding of amylose biosynthesis, structure and function that will be essential for future approaches to improve starch quality in crops.Starch granules are composed of two distinct glucose polymers - amylose and amylopectin. Amylose constitutes 5-35% of most natural starches and has a major influence over starch properties in foods. Its synthesis and storage occurs within the semicrystalline amylopectin matrix of starch granules, this poses a great challenge for biochemical and structural analyses. However, the last two decades have seen vast progress in understanding amylose synthesis, including new insights into the action of GRANULE BOUND STARCH SYNTHASE (GBSS), the major glucosyltransferase that synthesises amylose, and the discovery of PROTEIN TARGETING TO STARCH1 (PTST1) that targets GBSS to starch granules. Advances in analytical techniques have resolved the fine structure of amylose, raising new questions on how structure is determined during biosynthesis. Furthermore, the discovery of wild plants that do not produce amylose revives a long-standing question of why starch granules contain amylose, rather than amylopectin alone. Overall, these findings contribute towards a full understanding of amylose biosynthesis, structure and function that will be essential for future approaches to improve starch quality in crops.
Author Seung, David
Author_xml – sequence: 1
  givenname: David
  surname: Seung
  fullname: Seung, David
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32767769$$D View this record in MEDLINE/PubMed
BookMark eNqN0MtKAzEUBuAgFXvRRR9AKbjRxbS5niTLUtQKRV0ouBsy0wydMp2pyQzStzfay6KgmM3ZfP_h5O-iVlmVFqE-wUMS3qhcL4YElFAnqEM46EgRJluogzFVEXB4b6Ou90uMsRZAz1CbUQlSgu6g_ni1KSpvB3k58LVx6eIcnWam8PZiN3vo7f7udTKNZs8Pj5PxLEo5ZyoiVs9BywQbnsyxAEmpzCDFgBnlhCXKmCSxIuMyMzSzWlgluA3YciAGOOuhm-3etas-GuvreJX71BaFKW3V-JgKIEJgkP-gnBFFBaE40OsjuqwaV4aPBBWuxJKEcnroaqeaZGXn8drlK-M28b6XAG63IHWV985mB0Jw_N15HDqPfzoPdnRk07w2dV6VtTN58VfiMy_s5vfV8dPLdJ-43CaWvq7cIUFBgyIa2Bd2xZez
CitedBy_id crossref_primary_10_1002_jsfa_13933
crossref_primary_10_1016_j_ijbiomac_2024_131956
crossref_primary_10_1016_j_crfs_2025_101023
crossref_primary_10_1016_j_ijbiomac_2023_128426
crossref_primary_10_1111_nph_17342
crossref_primary_10_1038_s41598_024_55581_w
crossref_primary_10_3390_molecules26092595
crossref_primary_10_3389_fpls_2024_1332150
crossref_primary_10_1016_j_foodhyd_2021_107042
crossref_primary_10_3390_foods13040556
crossref_primary_10_1002_fft2_490
crossref_primary_10_1016_j_ifset_2024_103658
crossref_primary_10_3389_fnut_2024_1389745
crossref_primary_10_3390_ijms231810741
crossref_primary_10_3390_ijms22094845
crossref_primary_10_1016_j_ijbiomac_2025_141630
crossref_primary_10_1016_j_nexres_2025_100192
crossref_primary_10_3390_foods13071103
crossref_primary_10_3390_plants11202697
crossref_primary_10_1016_j_foodhyd_2023_108821
crossref_primary_10_1016_j_fcr_2025_109760
crossref_primary_10_1016_j_pbi_2021_102013
crossref_primary_10_1007_s10924_024_03265_x
crossref_primary_10_1016_j_jafr_2024_101065
crossref_primary_10_3390_ijms22158093
crossref_primary_10_1016_j_tifs_2023_03_017
crossref_primary_10_1002_pol_20241130
crossref_primary_10_1016_j_fochx_2024_101830
crossref_primary_10_1016_j_jfca_2023_105332
crossref_primary_10_1016_j_foohum_2025_100543
crossref_primary_10_1186_s12870_023_04369_7
crossref_primary_10_1590_0104_1428_20210031
crossref_primary_10_3390_ijms22168972
crossref_primary_10_1016_j_ultsonch_2024_106963
crossref_primary_10_1016_j_carbpol_2024_121860
crossref_primary_10_1016_j_cesys_2024_100177
crossref_primary_10_1111_1541_4337_13212
crossref_primary_10_1021_acsomega_4c06313
crossref_primary_10_1039_D4FB00288A
crossref_primary_10_3389_fpls_2023_1145837
crossref_primary_10_1002_jsfa_14003
crossref_primary_10_1016_j_fochx_2024_101670
crossref_primary_10_1016_j_plaphy_2025_109543
crossref_primary_10_52419_issn2072_2419_2024_4_26
crossref_primary_10_1038_s41598_022_20618_5
crossref_primary_10_3390_ijms232112981
crossref_primary_10_1016_j_tifs_2021_12_005
crossref_primary_10_1016_j_jbc_2022_102074
crossref_primary_10_1080_10408398_2024_2388279
crossref_primary_10_3390_ijms241310640
crossref_primary_10_1016_j_carbpol_2023_121573
crossref_primary_10_1360_SSC_2023_0024
crossref_primary_10_3390_foods10102359
crossref_primary_10_1016_j_foodres_2023_113564
crossref_primary_10_1016_j_ijbiomac_2024_138724
crossref_primary_10_1016_j_foodres_2023_112875
crossref_primary_10_1007_s11694_024_02852_9
crossref_primary_10_3390_agriculture14111979
crossref_primary_10_1007_s13205_024_04038_y
crossref_primary_10_1016_j_carbpol_2022_119640
crossref_primary_10_1016_j_ijbiomac_2023_124315
crossref_primary_10_1016_j_fcr_2022_108493
crossref_primary_10_3390_polym14112215
crossref_primary_10_1007_s00344_024_11514_5
crossref_primary_10_1111_1541_4337_70101
crossref_primary_10_3389_fpls_2023_1207518
crossref_primary_10_1016_j_eurpolymj_2024_113425
crossref_primary_10_3390_ijms25094711
crossref_primary_10_1007_s12520_024_01972_z
crossref_primary_10_1016_j_ijbiomac_2024_131488
crossref_primary_10_3390_foods13101507
crossref_primary_10_3390_ijms22115901
crossref_primary_10_3390_ijms25179282
crossref_primary_10_1016_j_carbpol_2024_121885
crossref_primary_10_9787_PBB_2023_11_1_56
crossref_primary_10_1111_1541_4337_13355
crossref_primary_10_1016_j_plantsci_2023_111843
crossref_primary_10_3390_foods13152449
crossref_primary_10_1016_j_colsurfa_2024_133485
crossref_primary_10_3390_foods13030463
crossref_primary_10_1016_j_ijbiomac_2021_11_147
crossref_primary_10_1371_journal_pone_0310990
crossref_primary_10_1016_j_ijbiomac_2023_128864
crossref_primary_10_1111_nph_18992
crossref_primary_10_3389_fpls_2021_745579
crossref_primary_10_1039_D3NJ00830D
crossref_primary_10_1016_j_carbpol_2022_120185
crossref_primary_10_1016_j_ijbiomac_2024_131911
crossref_primary_10_1021_acs_jafc_3c07576
crossref_primary_10_1016_j_jfca_2025_107425
crossref_primary_10_1016_j_ijbiomac_2024_138397
crossref_primary_10_1016_j_fcr_2024_109329
crossref_primary_10_1016_j_ultsonch_2024_106891
crossref_primary_10_1016_j_jas_2021_105465
crossref_primary_10_1016_j_foodchem_2024_141558
crossref_primary_10_1016_j_foodchem_2024_140104
crossref_primary_10_3390_molecules29122842
crossref_primary_10_1016_j_biotechadv_2023_108281
crossref_primary_10_1016_j_carbpol_2022_119624
crossref_primary_10_1016_j_xplc_2021_100237
crossref_primary_10_1080_07388551_2022_2092715
crossref_primary_10_1007_s13399_023_04521_1
crossref_primary_10_1111_pbi_14324
crossref_primary_10_3390_foods11162489
crossref_primary_10_1186_s13068_021_02074_x
crossref_primary_10_1016_j_jcs_2022_103481
crossref_primary_10_1186_s12864_022_09031_4
crossref_primary_10_3390_ijms24043405
crossref_primary_10_1039_D4FB00030G
crossref_primary_10_3389_fnut_2024_1285169
crossref_primary_10_3390_genes12121993
crossref_primary_10_1016_j_foodchem_2024_140611
crossref_primary_10_1016_j_chemosphere_2021_133036
crossref_primary_10_3390_gels10110735
crossref_primary_10_3390_ijms24043927
crossref_primary_10_1002_jsfa_13514
crossref_primary_10_3389_frfst_2023_1331245
crossref_primary_10_3390_agronomy13010017
crossref_primary_10_3390_polym16162259
crossref_primary_10_1007_s11105_025_01547_9
crossref_primary_10_1007_s12298_023_01295_8
crossref_primary_10_1016_j_foodres_2022_112119
crossref_primary_10_1016_j_indcrop_2023_117197
crossref_primary_10_1016_j_carbpol_2023_121490
crossref_primary_10_1021_acs_jchemed_4c00816
crossref_primary_10_1016_j_jplph_2022_153770
crossref_primary_10_1186_s13068_022_02174_2
crossref_primary_10_2298_APT2354265D
crossref_primary_10_3390_fermentation9020134
crossref_primary_10_1016_j_jhazmat_2024_136706
crossref_primary_10_1093_plphys_kiae429
crossref_primary_10_1111_ppl_13653
crossref_primary_10_1007_s10142_022_00923_y
crossref_primary_10_1111_pbi_14505
crossref_primary_10_1016_j_ijbiomac_2022_10_213
crossref_primary_10_1021_acs_chemrev_3c00811
crossref_primary_10_1002_bab_2546
crossref_primary_10_1093_plcell_koad217
crossref_primary_10_3390_ijms25179243
crossref_primary_10_1093_jimb_kuae004
crossref_primary_10_1080_15592324_2025_2470775
crossref_primary_10_35633_inmateh_73_43
crossref_primary_10_1007_s13300_022_01283_3
crossref_primary_10_1111_1541_4337_12749
crossref_primary_10_1016_j_jclepro_2023_140430
crossref_primary_10_1016_j_ijbiomac_2024_136058
crossref_primary_10_3389_fpls_2021_757997
crossref_primary_10_1016_j_ijbiomac_2023_124506
crossref_primary_10_3389_fnut_2025_1513814
crossref_primary_10_1016_j_ijbiomac_2022_11_129
crossref_primary_10_3390_nu16162707
crossref_primary_10_3390_ijms21197011
crossref_primary_10_1186_s12915_022_01408_x
crossref_primary_10_1021_acsagscitech_3c00450
crossref_primary_10_1073_pnas_2305990120
Cites_doi 10.1002/1521-379X(200110)53:10<504::AID-STAR504>3.0.CO;2-5
10.1042/bj3420647
10.3389/fpls.2018.01138
10.1002/star.19870390207
10.1126/sciadv.aat6086
10.1073/pnas.82.12.4177
10.1105/tpc.17.00222
10.1111/tpj.12633
10.1007/s10973-006-7880-z
10.1002/star.19970491103
10.1093/jxb/ert187
10.1107/S090744491300440X
10.1002/star.19940460402
10.1093/oxfordjournals.jhered.a109700
10.1146/annurev-arplant-042809-112301
10.1186/1471-2229-8-120
10.1073/pnas.0510737103
10.1016/j.copbio.2010.11.014
10.1046/j.1365-313X.1996.10061135.x
10.1007/BF02341037
10.1105/tpc.19.00089
10.1021/bm990016l
10.1094/CCHEM.2004.81.5.611
10.1002/star.201300238
10.5962/bhl.title.37128
10.1046/j.1365-3040.1997.d01-48.x
10.1105/tpc.002907
10.1046/j.1365-313x.2001.01012.x
10.1093/jxb/ern198
10.1016/j.plantsci.2013.05.019
10.1104/pp.104.4.1449
10.1111/j.1365-313X.2006.02968.x
10.5458/jag.52.239
10.1371/journal.pbio.1002080
10.1104/pp.46.2.299
10.1111/1541-4337.12416
10.1007/BF00019490
10.2307/3869673
10.1104/pp.010127
10.3390/agronomy7030056
10.1111/j.1365-313X.2005.02462.x
10.1016/0141-8130(96)81838-1
10.1016/j.ijbiomac.2007.07.005
10.1271/bbb1961.49.1973
10.1007/s11248-011-9507-9
10.1093/genetics/162.2.941
10.1104/pp.125.4.1723
10.1046/j.1432-1327.1999.00861.x
10.1016/0092-8674(90)90721-P
10.1016/j.carbpol.2015.03.081
10.1016/S0008-6215(00)80215-3
10.1093/jxb/err188
10.1007/s11032-009-9360-1
10.1104/pp.118.2.451
10.1093/molbev/msm280
10.6090/jarq.40.327
10.1002/bip.21005
10.1007/s00438-005-0013-8
10.1105/tpc.18.00219
10.1186/1756-0500-6-84
10.1105/tpc.109.066522
10.1111/jipb.12866
10.1093/jxb/erw503
10.1104/pp.005454
10.1007/s00018-016-2250-x
10.1016/j.molp.2019.05.011
10.1002/j.2050-0416.1969.tb03194.x
10.1093/pcp/pcs190
10.1016/S0008-6215(00)00275-5
10.1104/pp.101.1.237
10.1186/1471-2229-8-96
10.1016/j.pbi.2003.12.001
10.1016/j.carbpol.2018.09.078
10.1007/BF00249167
10.1105/tpc.19.00946
10.1021/ma970136q
10.1007/s10126-006-6104-7
10.1007/BF02191591
10.1046/j.1365-313x.1998.00317.x
10.1271/bbb.120305
10.1104/pp.122.1.255
10.1104/pp.104.044347
10.1016/0008-6215(93)84260-D
10.1104/pp.63.5.973
10.1002/star.201200211
10.1128/EC.00380-05
10.1104/pp.120.4.993
10.1078/0176-1617-00360
10.1104/pp.107.102533
10.1093/mp/sst131
10.1093/molbev/msq040
10.1016/0008-6215(95)00381-9
10.1093/oxfordjournals.jhered.a108711
10.1371/journal.pone.0030088
10.1105/tpc.16.00011
10.1111/pbi.13137
10.1111/j.1469-8137.1981.tb04568.x
10.1038/srep40124
10.1093/jxb/47.2.171
10.1002/star.200600515
10.1023/A:1023053420632
10.1038/75427
10.1104/pp.102.4.1269
10.1104/pp.19.01062
10.1007/BF00485766
10.1071/BI9630070
10.2307/3870306
10.1093/pcp/pcg068
10.1094/CCHEM.1999.76.5.629
10.1094/CCHEM-11-12-0141-FI
10.1007/s11032-008-9178-2
10.1093/oxfordjournals.jhered.a102131
10.1105/tpc.017400
10.1152/physrev.2001.81.3.1031
10.1046/j.1365-3040.1999.00437.x
10.1042/BJ20120573
10.5458/jag.jag.JAG-2018_005
10.1016/j.bbagen.2013.08.029
10.1016/S0065-2113(08)60859-7
10.5458/jag.52.233
10.1105/tpc.114.122721
10.1111/jipb.12620
10.1146/annurev.arplant.54.031902.134927
10.1002/star.19940460906
10.5458/jag.jag.JAG-2012_018
10.1007/s00425-003-1101-9
10.1093/oxfordjournals.jhered.a103794
10.1128/jb.174.11.3612-3620.1992
10.1093/jxb/ery412
10.1007/s004250050627
10.1104/pp.111.3.821
10.1016/j.carbpol.2011.09.093
10.1093/jxb/ery398
10.1021/bm900426n
10.1186/1471-2229-12-223
10.1016/j.jcs.2013.12.012
10.1093/jxb/err341
10.1104/pp.010640
10.1111/jipb.12848
10.1111/j.1439-0523.2012.02004.x
10.1007/BF00222961
10.1093/jxb/ers235
10.1039/jr9620000222
10.1007/BF00223647
10.1021/jf070633y
10.1007/s004250050639
10.1105/tpc.108.063487
10.1074/jbc.271.27.16281
10.1186/s12870-017-1118-z
10.1016/j.foodchem.2015.09.112
10.1046/j.1365-313X.1992.t01-42-00999.x
10.1007/s10681-005-5298-5
10.1016/j.jsb.2003.08.009
10.1042/0264-6021:3400183
10.1016/0168-9452(89)90023-X
10.1046/j.1365-313X.1995.7040613.x
10.1007/s00239-009-9300-z
10.1094/CCHEM.2004.81.3.377
10.1016/0008-6215(87)80008-3
10.1007/BF00198043
10.1016/j.carbpol.2018.05.049
10.1104/pp.003756
10.1074/jbc.M302806200
10.1104/pp.106.081885
10.1046/j.1365-313X.1993.04010191.x
10.1111/pbi.13367
10.1093/pcp/pcn066
10.1016/j.cub.2009.01.044
10.1128/EC.00373-07
10.3389/fpls.2015.01265
10.1016/j.carbpol.2011.11.072
10.3389/fpls.2018.00746
10.1021/jf5011676
10.1074/jbc.273.35.22232
ContentType Journal Article
Copyright 2020 The Author © 2020 New Phytologist Trust
2020 The Author. New Phytologist © 2020 New Phytologist Trust
2020 The Author. New Phytologist © 2020 New Phytologist Trust.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Author © 2020 New Phytologist Trust
– notice: 2020 The Author. New Phytologist © 2020 New Phytologist Trust
– notice: 2020 The Author. New Phytologist © 2020 New Phytologist Trust.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.16858
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE


Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1504
ExternalDocumentID 32767769
10_1111_nph_16858
NPH16858
26968196
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  funderid: BBS/E/J/000PR9790; BBS/E/J/000PR9799
– fundername: John Innes Foundation
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/J/000PR9790
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/J/000PR9799
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACHIC
ACQPF
ADULT
AEEZP
AEQDE
AEUQT
AFPWT
AHXOZ
AILXY
AIWBW
AJBDE
AQVQM
AS~
CAG
COF
DOOOF
EJD
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
LW6
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ABSQW
ADXHL
AGUYK
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4438-1e9d697b0a4bd0567227f6c06032413b8aabbe5f47fa2fe95e854ea4be461a643
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:23:38 EDT 2025
Fri Jul 11 16:03:11 EDT 2025
Mon Aug 18 14:40:53 EDT 2025
Mon Jul 21 06:04:51 EDT 2025
Thu Apr 24 23:05:59 EDT 2025
Tue Jul 01 02:28:35 EDT 2025
Wed Jan 22 16:32:13 EST 2025
Thu Jul 03 21:56:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords GRANULE BOUND STARCH SYNTHASE (GBSS)
starch granules
starch synthesis
amylose
starch
carbohydrate
amylopectin
Language English
License Attribution
2020 The Author. New Phytologist © 2020 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4438-1e9d697b0a4bd0567227f6c06032413b8aabbe5f47fa2fe95e854ea4be461a643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3905-3647
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.16858
PMID 32767769
PQID 2456707181
PQPubID 2026848
PageCount 15
ParticipantIDs proquest_miscellaneous_2561550674
proquest_miscellaneous_2431825120
proquest_journals_2456707181
pubmed_primary_32767769
crossref_primary_10_1111_nph_16858
crossref_citationtrail_10_1111_nph_16858
wiley_primary_10_1111_nph_16858_NPH16858
jstor_primary_26968196
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201201
December 2020
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201201
  day: 1
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2020
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2002; 14
2013; 69
1976; 67
2004; 7
2019; 12
2011; 62
2013; 64
2019; 17
2014; 26
1990; 182
2019; 204
1997; 49
2012b; 448
2012; 12
2003; 51
2003; 278
1993; 247
2013; 6
1987; 39
1999; 209
2003; 54
1990; 60
2020; 18
1981; 88
1998; 273
1998; 16
2010; 22
1965; 1
2018; 9
2012; 131
2010; 27
2000; 18
2009; 10
1909
2010; 25
2018; 4
2013; 54
2008; 25
2007; 9
2013; 60
1995; 248
2018; 30
2008; 22
2000; 122
2008; 20
2009; 19
1994; 71
1992; 2
2012; 21
2001; 53
2003; 44
2009; 69
2003; 218
1987; 168
1989; 64
2019; 31
1984; 48
2015; 127
1997; 20
2002; 130
2006; 58
2017; 68
2012a; 63
1994; 88
2013; 90
2008; 59
1999; 22
2001; 26
1996; 92
1985; 82
2020; 32
1962; II
1993; 102
2014; 1840
1996; 10
1993; 101
1995; 7
2018; 196
2015; 67
2016; 6
2016; 7
2006; 40
1997; 30
2008; 49
2019b; 71
1921; 12
2013; 210
1996; 111
2016; 28
2007; 87
2001; 158
2006; 103
2017; 7
1933; 24
1987; 75
1974; 11
1999b; 340
2007; 144
1969; 75
1999; 120
1998; 118
2008; 7
2008; 8
2016; 73
2000; 1
2002b; 129
2014; 62
2014; 66
1993; 4
2010; 61
1968; 20
2001; 330
2004; 136
2019; 62
1994; 104
2005; 144
2019; 66
1993; 70
2014; 59
1979; 63
2019a; 18
2014; 7
1996; 8
2016; 196
2012; 63
2015; 13
2019; 70
2009; 21
2004; 81
2005; 274
1995; 17
1992; 186
1982; 73
2020; 182
1996; 282
2006; 5
1994; 46
2005; 43
2017; 29
1999; 266
2018; 60
2007; 55
2012; 76
1985; 49
2001; 125
2001; 127
2002a; 128
2001; 81
1963; 16
2014; 80
1992; 174
2017; 17
2002; 162
2004; 16
1999a; 653
2005; 52
1996; 271
2008; 89
1999; 76
1994b; 26
2006; 142
2016; 60
1992; 69
2007; 41
1996; 47
2012; 7
1994a; 6
2012; 88
2012; 87
2003; 143
2007; 49
1970; 46
e_1_2_13_120_1
e_1_2_13_143_1
e_1_2_13_166_1
e_1_2_13_24_1
Matheson NK (e_1_2_13_103_1) 1963; 16
e_1_2_13_47_1
e_1_2_13_20_1
e_1_2_13_66_1
e_1_2_13_101_1
e_1_2_13_147_1
e_1_2_13_124_1
e_1_2_13_85_1
e_1_2_13_8_1
e_1_2_13_162_1
e_1_2_13_92_1
e_1_2_13_96_1
e_1_2_13_117_1
e_1_2_13_17_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_59_1
e_1_2_13_154_1
e_1_2_13_131_1
e_1_2_13_32_1
e_1_2_13_55_1
e_1_2_13_112_1
e_1_2_13_158_1
e_1_2_13_135_1
e_1_2_13_177_1
e_1_2_13_51_1
e_1_2_13_74_1
e_1_2_13_173_1
e_1_2_13_70_1
e_1_2_13_150_1
Santelia D (e_1_2_13_127_1) 2010; 22
e_1_2_13_4_1
e_1_2_13_105_1
e_1_2_13_88_1
e_1_2_13_128_1
e_1_2_13_29_1
e_1_2_13_109_1
e_1_2_13_25_1
e_1_2_13_48_1
Greenwood CT (e_1_2_13_62_1) 1962
e_1_2_13_165_1
e_1_2_13_100_1
e_1_2_13_21_1
e_1_2_13_44_1
e_1_2_13_67_1
e_1_2_13_104_1
e_1_2_13_123_1
e_1_2_13_86_1
e_1_2_13_146_1
e_1_2_13_9_1
e_1_2_13_40_1
e_1_2_13_63_1
e_1_2_13_161_1
e_1_2_13_180_1
e_1_2_13_95_1
e_1_2_13_116_1
e_1_2_13_99_1
Wang W (e_1_2_13_168_1) 2019; 62
Denyer K (e_1_2_13_43_1) 1999; 653
e_1_2_13_139_1
e_1_2_13_18_1
e_1_2_13_14_1
e_1_2_13_130_1
e_1_2_13_153_1
e_1_2_13_37_1
e_1_2_13_79_1
e_1_2_13_10_1
e_1_2_13_56_1
e_1_2_13_115_1
e_1_2_13_134_1
e_1_2_13_157_1
e_1_2_13_176_1
e_1_2_13_33_1
e_1_2_13_75_1
Emoto KN (e_1_2_13_52_1) 2016; 60
Nielsen MM (e_1_2_13_111_1) 2018; 9
e_1_2_13_172_1
e_1_2_13_71_1
e_1_2_13_5_1
e_1_2_13_108_1
e_1_2_13_49_1
e_1_2_13_122_1
e_1_2_13_141_1
e_1_2_13_164_1
e_1_2_13_26_1
e_1_2_13_68_1
Zhou W (e_1_2_13_181_1) 2019; 62
e_1_2_13_45_1
e_1_2_13_126_1
e_1_2_13_87_1
e_1_2_13_145_1
e_1_2_13_22_1
e_1_2_13_64_1
e_1_2_13_41_1
e_1_2_13_60_1
e_1_2_13_83_1
e_1_2_13_6_1
Helle S (e_1_2_13_69_1) 2018; 9
e_1_2_13_160_1
e_1_2_13_90_1
e_1_2_13_94_1
e_1_2_13_98_1
e_1_2_13_119_1
e_1_2_13_138_1
Karper RE (e_1_2_13_81_1) 1933; 24
e_1_2_13_19_1
e_1_2_13_133_1
e_1_2_13_179_1
Arai Y (e_1_2_13_3_1) 1984; 48
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_57_1
e_1_2_13_110_1
e_1_2_13_152_1
Stamp P (e_1_2_13_142_1) 2016; 7
e_1_2_13_137_1
e_1_2_13_175_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_53_1
e_1_2_13_76_1
e_1_2_13_114_1
e_1_2_13_156_1
e_1_2_13_171_1
e_1_2_13_30_1
e_1_2_13_72_1
e_1_2_13_2_1
Li E (e_1_2_13_91_1) 2019; 71
e_1_2_13_107_1
e_1_2_13_149_1
e_1_2_13_121_1
e_1_2_13_144_1
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_163_1
Jane J (e_1_2_13_78_1) 1992; 69
e_1_2_13_102_1
e_1_2_13_125_1
e_1_2_13_148_1
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_65_1
e_1_2_13_167_1
e_1_2_13_182_1
e_1_2_13_7_1
e_1_2_13_61_1
e_1_2_13_80_1
e_1_2_13_140_1
Wang YJ (e_1_2_13_169_1) 1993; 70
e_1_2_13_93_1
e_1_2_13_97_1
e_1_2_13_118_1
e_1_2_13_39_1
e_1_2_13_132_1
e_1_2_13_155_1
e_1_2_13_178_1
e_1_2_13_35_1
e_1_2_13_16_1
e_1_2_13_58_1
e_1_2_13_113_1
e_1_2_13_136_1
e_1_2_13_159_1
e_1_2_13_174_1
e_1_2_13_31_1
e_1_2_13_77_1
e_1_2_13_12_1
e_1_2_13_54_1
e_1_2_13_170_1
e_1_2_13_73_1
e_1_2_13_50_1
e_1_2_13_151_1
e_1_2_13_106_1
e_1_2_13_129_1
Kasemsuwan T (e_1_2_13_82_1) 1994; 71
e_1_2_13_89_1
Kempton JH (e_1_2_13_84_1) 1921; 12
e_1_2_13_28_1
References_xml – volume: 52
  start-page: 233
  year: 2005
  end-page: 237
  article-title: Structural characterization of long unit‐chains of amylopectin
  publication-title: Journal of Applied Glycoscience
– volume: 131
  start-page: 700
  year: 2012
  end-page: 706
  article-title: Amylose content is not affected by overexpression of the gene in durum wheat
  publication-title: Plant Breeding
– volume: 248
  start-page: 253
  year: 1995
  end-page: 259
  article-title: Production of waxy (amylose‐free) wheats
  publication-title: MGG Molecular & General Genetics
– volume: 10
  start-page: 2245
  year: 2009
  end-page: 2253
  article-title: Characterization of starch by size‐exclusion chromatography: the limitations imposed by shear scission
  publication-title: Biomacromolecules
– volume: 7
  start-page: 117
  year: 2016
  end-page: 123
  article-title: Improving waxy maize, the heritage of South East Asia
  publication-title: International Journal of Environmental and Rural Development
– volume: 60
  start-page: 3
  year: 2013
  end-page: 20
  article-title: Starch synthesizing reactions and paths: in vitro and in vivo studies
  publication-title: Journal of Applied Glycoscience
– volume: 271
  start-page: 16281
  year: 1996
  end-page: 16287
  article-title: Control of starch composition and structure through substrate supply in the monocellular alga
  publication-title: Journal of Biological Chemistry
– volume: 49
  start-page: 438
  year: 1997
  end-page: 443
  article-title: Comparison between amylose‐free and amylose containing potato starches
  publication-title: Starch ‐ Stärke
– volume: 69
  start-page: 405
  year: 1992
  end-page: 409
  article-title: Location of amylose in normal starch granules. I: Susceptibility of amylose and amylopectin to cross‐linking reagents
  publication-title: Cereal Chemistry
– volume: 31
  start-page: 2169
  year: 2019
  end-page: 2186
  article-title: LIKE SEX4 1 acts as a beta‐amylase‐binding scaffold on starch granules during starch degradation
  publication-title: Plant Cell
– volume: 127
  start-page: 264
  year: 2015
  end-page: 274
  article-title: Roles of GBSSI and SSIIa in determining amylose fine structure
  publication-title: Carbohydrate Polymers
– volume: 1
  start-page: 71
  year: 1965
  end-page: 82
  article-title: Studies on the biosynthesis of starch granules
  publication-title: Carbohydrate Research
– volume: 118
  start-page: 451
  year: 1998
  end-page: 459
  article-title: Characterization of a granule‐bound starch synthase isoform found in the pericarp of wheat
  publication-title: Plant Physiology
– volume: 10
  start-page: 1135
  year: 1996
  end-page: 1143
  article-title: The elongation of amylose and amylopectin chains in isolated starch granules
  publication-title: The Plant Journal
– volume: 44
  start-page: 473
  year: 2003
  end-page: 480
  article-title: Introduction of transgene into rice mutants leads to both high‐ and low‐amylose rice
  publication-title: Plant and Cell Physiology
– volume: 9
  start-page: 192
  year: 2007
  end-page: 202
  article-title: Variation in storage α‐polyglucans of red algae: Amylose and semi‐amylopectin types in Porphyridium and glycogen type in Cyanidium
  publication-title: Marine Biotechnology
– volume: 162
  start-page: 941
  year: 2002
  end-page: 950
  article-title: Molecular evidence on the origin and evolution of glutinous rice
  publication-title: Genetics
– volume: 9
  start-page: 1
  year: 2018
  end-page: 14
  article-title: Proteome analysis of potato starch reveals the presence of new starch metabolic proteins as well as multiple protease inhibitors
  publication-title: Frontiers in Plant Science
– volume: 82
  start-page: 4177
  year: 1985
  end-page: 4181
  article-title: Molecular basis of mutations at the locus of maize: correlation with the fine structure genetic map
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 12
  start-page: 1
  year: 2012
  end-page: 16
  article-title: Concerted suppression of all starch branching enzyme genes in barley produces amylose‐only starch granules
  publication-title: BMC Plant Biology
– volume: 1
  start-page: 126
  year: 2000
  end-page: 132
  article-title: Internal structure of normal maize starch granules revealed by chemical surface gelatinization
  publication-title: Biomacromolecules
– volume: 196
  start-page: 422
  year: 2018
  end-page: 426
  article-title: Ultra‐high performance liquid chromatography‐size exclusion chromatography (UPLC‐SEC) as an efficient tool for the rapid and highly informative characterisation of biopolymers
  publication-title: Carbohydrate Polymers
– volume: 64
  start-page: 3453
  year: 2013
  end-page: 3466
  article-title: bZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm
  publication-title: Journal of Experimental Botany
– volume: 75
  start-page: 156
  year: 1969
  end-page: 164
  article-title: Development of starch and other components in normal and high amylose barley
  publication-title: Journal of the Institute of Brewing
– volume: 168
  start-page: 79
  year: 1987
  end-page: 88
  article-title: Structures of rice amylopectins with low and high affinities for iodine
  publication-title: Carbohydrate Research
– volume: 22
  start-page: 543
  year: 1999
  end-page: 550
  article-title: Evidence that amylose synthesis occurs within the matrix of the starch granule in potato tubers
  publication-title: Plant, Cell & Environment
– volume: 5
  start-page: 954
  year: 2006
  end-page: 963
  article-title: Nature of the periplastidial pathway of starch synthesis in the cryptophyte
  publication-title: Eukaryotic Cell
– volume: 67
  start-page: 14
  year: 2015
  end-page: 29
  article-title: Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches
  publication-title: Starch/Staerke
– volume: 1840
  start-page: 113
  year: 2014
  end-page: 119
  article-title: Tracking sulfur and phosphorus within single starch granules using synchrotron X‐ray microfluorescence mapping
  publication-title: Biochimica et Biophysica Acta
– volume: 142
  start-page: 305
  year: 2006
  end-page: 317
  article-title: Circadian clock regulation of starch metabolism establishes GBSSI as a major contributor to amylopectin synthesis in
  publication-title: Plant Physiology
– volume: 18
  start-page: 551
  year: 2000
  end-page: 554
  article-title: Production of very‐high‐amylose potato starch by inhibition of SBE A and B
  publication-title: Nature Biotechnology
– volume: 247
  start-page: 279
  year: 1993
  end-page: 290
  article-title: Internal structure of the potato starch granule revealed by chemical gelatinization
  publication-title: Carbohydrate Research
– volume: 17
  start-page: 315
  year: 1995
  end-page: 321
  article-title: The influence of amylose on starch granule structure
  publication-title: International Journal of Biological Macromolecules
– volume: 62
  start-page: 948
  year: 2019
  end-page: 966
  article-title: GBSS‐BINDING PROTEIN, encoding a CBM48 domain‐containing protein, affects rice quality and yield
  publication-title: Journal of Integrative Plant Biology
– volume: 20
  start-page: 275
  year: 1968
  end-page: 322
  article-title: Carbohydrate synthesis in maize
  publication-title: Advances in Agronomy
– volume: 120
  start-page: 993
  year: 1999
  end-page: 1003
  article-title: Genetic and biochemical evidence for the involvement of α‐1,4 glucanotransferases in amylopectin synthesis
  publication-title: Plant Physiology
– volume: 103
  start-page: 3546
  year: 2006
  end-page: 3551
  article-title: High‐amylose wheat generated by RNA interference improves indices of large‐bowel health in rats
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 22
  start-page: 271
  year: 2010
  end-page: 280
  article-title: Progress in Arabidopsis starch research and potential biotechnological applications
  publication-title: Current Opinion in Biotechnology
– volume: 158
  start-page: 479
  year: 2001
  end-page: 487
  article-title: The control of amylose synthesis
  publication-title: Journal of Plant Physiology
– volume: 17
  start-page: 1
  year: 2017
  end-page: 13
  article-title: phosphoproteome characterization reveals key starch granule‐binding phosphoproteins involved in wheat water‐deficit response
  publication-title: BMC Plant Biology
– volume: 62
  start-page: 832
  year: 2019
  end-page: 846
  article-title: Production of very‐high‐amylose cassava by post‐transcriptional silencing of branching enzyme genes
  publication-title: Journal of Integrative Plant Biology
– volume: 27
  start-page: 1478
  year: 2010
  end-page: 1494
  article-title: Molecular basis of the waxy endosperm starch phenotype in broomcorn millet ( L.)
  publication-title: Molecular Biology and Evolution
– volume: 13
  year: 2015
  article-title: PROTEIN TARGETING TO STARCH is required for localising GRANULE‐BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis
  publication-title: PLoS Biology
– volume: 58
  start-page: 443
  year: 2006
  end-page: 452
  article-title: Molecular structure of starches from cassava varieties having different cooked root textures
  publication-title: Starch/Staerke
– volume: 26
  start-page: 1759
  year: 1994b
  end-page: 1773
  article-title: Field evaluation of transgenic potato plants expressing an antisense gene: increase of the antisense effect during tuber growth
  publication-title: Plant Molecular Biology
– volume: 70
  start-page: 485
  year: 2019
  end-page: 496
  article-title: Protein Targeting to Starch 1 is essential for starchy endosperm development in barley
  publication-title: Journal of Experimental Botany
– volume: 88
  start-page: 67
  year: 1981
  end-page: 71
  article-title: Amylose in floridean starch
  publication-title: New Phytologist
– volume: 89
  start-page: 761
  year: 2008
  end-page: 768
  article-title: A novel approach for calculating starch crystallinity and its correlation with double helix content: a combined XRD and NMR study
  publication-title: Biopolymers
– volume: 209
  start-page: 230
  year: 1999
  end-page: 238
  article-title: The influence of alterations in ADP‐glucose pyrophosphorylase activities on starch structure and composition in potato tubers
  publication-title: Planta
– volume: 29
  start-page: 1657
  year: 2017
  end-page: 1677
  article-title: Homologs of PROTEIN TARGETING TO STARCH control starch granule initiation in Arabidopsis leaves
  publication-title: Plant Cell
– volume: 71
  start-page: 282
  year: 1994
  end-page: 287
  article-title: Location of amylose in normal starch granules. II: Locations of phosphodiester cross‐linking revealed by phosphorus‐31 nuclear magnetic resonance
  publication-title: Cereal Chemistry
– volume: 41
  start-page: 534
  year: 2007
  end-page: 547
  article-title: Structural and thermodynamic properties of rice starches with different genetic background. Part 2. Defectiveness of different supramolecular structures in starch granules
  publication-title: International Journal of Biological Macromolecules
– volume: 19
  start-page: 359
  year: 2009
  end-page: 368
  article-title: Chlamydomonas CONSTANS and the evolution of plant photoperiodic signaling
  publication-title: Current Biology
– volume: II
  start-page: 222
  year: 1962
  end-page: 229
  article-title: Physicochemical studies on starches. Part XXIV. The fractionation and characterization of starches of various plant origins
  publication-title: Journal of the Chemical Society
– volume: 69
  start-page: 625
  year: 2009
  end-page: 634
  article-title: Isoforms of GBSSI and SSII in four legumes and their phylogenetic relationship to their orthologs from other angiosperms
  publication-title: Journal of Molecular Evolution
– volume: 2
  start-page: 193
  year: 1992
  end-page: 202
  article-title: Characterization of cDNAs encoding two isoforms of granule‐bound starch synthase which show differential expression in developing storage organs of pea and potato
  publication-title: The Plant Journal
– volume: 60
  start-page: 172
  year: 2016
  end-page: 178
  article-title: Variation and geographical distribution of perisperm starch in grain Amaranths ( .), and the origin of waxy perisperm type
  publication-title: Tropical Agriculture and Development
– volume: 210
  start-page: 141
  year: 2013
  end-page: 50
  article-title: Oligomerization of rice granule‐bound starch synthase 1 modulates its activity regulation
  publication-title: Plant Science
– volume: 136
  start-page: 2687
  year: 2004
  end-page: 2699
  article-title: Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves
  publication-title: Plant Physiology
– volume: 81
  start-page: 377
  year: 2004
  end-page: 383
  article-title: Grain quality characteristics and milling performance of full and partial waxy durum lines
  publication-title: Cereal Chemistry
– volume: 130
  start-page: 190
  year: 2002
  end-page: 198
  article-title: The altered pattern of amylose accumulation in the endosperm of low‐amylose barley cultivars is attributable to a single mutant allele of Granule‐Bound Starch Synthase I with a deletion in the 5’‐non‐coding region
  publication-title: Plant Physiology
– volume: 6
  start-page: 84
  year: 2013
  article-title: Intraspecific sequence variation and differential expression in starch synthase genes of
  publication-title: BMC Research Notes
– volume: 54
  start-page: 465
  year: 2013
  end-page: 473
  article-title: Physicochemical variation of cyanobacterial starch, the insoluble α‐glucans in cyanobacteria
  publication-title: Plant and Cell Physiology
– volume: 28
  start-page: 1472
  year: 2016
  end-page: 1489
  article-title: The starch granule‐associated protein EARLY STARVATION1 is required for the control of starch degradation in leaves
  publication-title: Plant Cell
– volume: 144
  start-page: 2009
  year: 2007
  end-page: 2023
  article-title: Characterization of SSIIIa‐deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm
  publication-title: Plant Physiology
– volume: 76
  start-page: 629
  year: 1999
  end-page: 637
  article-title: Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch
  publication-title: Cereal Chemistry
– volume: 182
  start-page: 599
  year: 1990
  end-page: 604
  article-title: Evidence that the “waxy” protein of pea ( L.) is not the major starch‐granule‐bound starch synthase
  publication-title: Planta
– volume: 47
  start-page: 171
  year: 1996
  end-page: 180
  article-title: An analysis of seed development in XIX. Effect of mutant alleles at the and loci on starch grain size and on the content and composition of starch in developing pea seeds
  publication-title: Journal of Experimental Botany
– volume: 32
  start-page: 2543
  year: 2020
  end-page: 2565
  article-title: STARCH SYNTHASE 5: A non‐canonical starch synthase‐like protein involved in starch granule initiation in Arabidopsis
  publication-title: Plant Cell
– volume: 16
  start-page: 70
  year: 1963
  article-title: Diurnal‐nocturnal changes in the starch of tobacco leaves
  publication-title: Australian Journal of Biological Sciences
– volume: 143
  start-page: 229
  year: 2003
  end-page: 241
  article-title: The molecular deposition of transgenically modified starch in the starch granule as imaged by functional microscopy
  publication-title: Journal of Structural Biology
– volume: 71
  start-page: 1
  year: 2019b
  end-page: 7
  article-title: The role of pullulanase in starch biosynthesis, structure, and thermal properties by studying sorghum with increased pullulanase activity
  publication-title: Starch/Staerke
– volume: 17
  start-page: 2259
  year: 2019
  end-page: 2271
  article-title: Cas9‐mediated mutagenesis of potato starch‐branching enzymes generates a range of tuber starch phenotypes
  publication-title: Plant Biotechnology Journal
– volume: 49
  start-page: 925
  year: 2008
  end-page: 933
  article-title: Granule‐bound starch synthase I is responsible for biosynthesis of extra‐long unit chains of amylopectin in rice
  publication-title: Plant and Cell Physiology
– volume: 87
  start-page: 1941
  year: 2012
  end-page: 1949
  article-title: New insights on the mechanism of acid degradation of pea starch
  publication-title: Carbohydrate Polymers
– volume: 21
  start-page: 39
  year: 2012
  end-page: 50
  article-title: Field testing and exploitation of genetically modified cassava with low‐amylose or amylose‐free starch in Indonesia
  publication-title: Transgenic Research
– volume: 75
  start-page: 217
  year: 1987
  end-page: 221
  article-title: Isolation of an amylose‐free starch mutant of the potato ( L.)
  publication-title: Theoretical and Applied Genetics
– volume: 52
  start-page: 239
  year: 2005
  end-page: 246
  article-title: Structure and properties of endosperm starches from cultivated rice of Asia and other countries
  publication-title: Journal of Applied Glycoscience
– volume: 204
  start-page: 24
  year: 2019
  end-page: 31
  article-title: How amylose molecular fine structure of rice starch affects functional properties
  publication-title: Carbohydrate Polymers
– volume: 144
  start-page: 151
  year: 2005
  end-page: 156
  article-title: Characterization of waxy grain sorghum lines in relation to granule‐bound starch synthase
  publication-title: Euphytica
– volume: 22
  start-page: 329
  year: 2008
  end-page: 338
  article-title: Molecular evidence for post‐domestication selection in the gene of Chinese waxy maize
  publication-title: Molecular Breeding
– volume: 128
  start-page: 1069
  year: 2002a
  end-page: 1076
  article-title: The priming of amylose synthesis in Arabidopsis leaves
  publication-title: Plant Physiology
– volume: 653
  start-page: 647
  year: 1999a
  end-page: 653
  article-title: Interaction with amylopectin influences the ability of granule‐bound starch synthase I to elongate malto‐oligosaccharides
  publication-title: Biochemical Journal
– volume: 60
  start-page: 369
  year: 2018
  end-page: 375
  article-title: Generation of new glutinous rice by CRISPR/Cas9‐targeted mutagenesis of the gene in elite rice varieties
  publication-title: Journal of Integrative Plant Biology
– volume: 102
  start-page: 1269
  year: 1993
  end-page: 1273
  article-title: Differentiation of the properties of the branching isozymes from maize ( )
  publication-title: Plant Physiology
– volume: 26
  start-page: 565
  year: 2014
  end-page: 584
  article-title: Photoperiodic control of carbon distribution during the floral transition in Arabidopsis
  publication-title: Plant Cell
– volume: 90
  start-page: 312
  year: 2013
  end-page: 325
  article-title: What is being learned about starch properties from multiple‐level characterization
  publication-title: Cereal Chemistry
– volume: 59
  start-page: 3395
  year: 2008
  end-page: 3406
  article-title: Proteome and phosphoproteome analysis of starch granule‐associated proteins from normal maize and mutants affected in starch biosynthesis
  publication-title: Journal of Experimental Botany
– volume: 73
  start-page: 467
  year: 1982
  article-title: Inheritance of starch characteristics in perisperm of
  publication-title: Journal of Heredity
– volume: 46
  start-page: 121
  year: 1994
  end-page: 129
  article-title: Anthology of starch granule morphology by scanning electron microscopy
  publication-title: Starch – Stärke
– volume: 70
  start-page: 771
  year: 2019
  end-page: 784
  article-title: Starch granule initiation and morphogenesis – progress in Arabidopsis and cereals
  publication-title: Journal of Experimental Botany
– volume: 8
  start-page: 96
  year: 2008
  article-title: Overlapping functions of the starch synthases SSII and SSIII in amylopectin biosynthesis in Arabidopsis
  publication-title: BMC Plant Biology
– volume: 48
  start-page: 1763
  year: 1984
  end-page: 1775
  article-title: Structural characterization of amylopectin and intermediate material in amylomaize starch granules
  publication-title: Agricultural and Biological Chemistry
– volume: 26
  start-page: 89
  year: 2001
  end-page: 100
  article-title: A critical role for disproportionating enzyme in starch breakdown is revealed by a knock‐out mutation in Arabidopsis
  publication-title: The Plant Journal
– volume: 218
  start-page: 261
  year: 2003
  end-page: 268
  article-title: Cloning and characterization of the gene in rice: gene expression is regulated by the nitrogen level, sugar and circadian rhythm
  publication-title: Planta
– volume: 66
  start-page: 28
  year: 2014
  end-page: 40
  article-title: Starch metabolism in green algae
  publication-title: Starch – Stärke
– volume: 49
  start-page: 1973
  year: 1985
  end-page: 1978
  article-title: Developmental changes in the structure of endosperm starch of rice ( L.)
  publication-title: Agricultural and Biological Chemistry
– volume: 16
  start-page: 531
  year: 1998
  end-page: 540
  article-title: Altered plastidic ATP/ADP‐transporter activity influences potato ( L.) tuber morphology, yield and composition of tuber starch
  publication-title: The Plant Journal
– volume: 66
  start-page: 37
  year: 2019
  end-page: 46
  article-title: Three major nucleotide polymorphisms in the gene correlated with the amounts of extra‐long chains of amylopectin in rice cultivars with S or L‐type amylopectin
  publication-title: Journal of Applied Glycoscience
– volume: 87
  start-page: 575
  year: 2007
  end-page: 584
  article-title: Structure of starches extracted from near‐isogenic wheat lines: PPPart 2. Molecular organization of amylopectin clusters
  publication-title: Journal of Thermal Analysis and Calorimetry
– volume: 7
  start-page: 56
  year: 2017
  article-title: Understanding starch structure: recent progress
  publication-title: Agronomy
– volume: 63
  start-page: 973
  year: 1979
  end-page: 977
  article-title: Starch and its component ratio in developing cotton leaves
  publication-title: Plant Physiology
– volume: 88
  start-page: 369
  year: 1994
  end-page: 375
  article-title: Expression of a wild‐type GBSS gene introduced into an amylose‐free potato mutant by and the inheritance of the inserts at the microsporic level
  publication-title: Theoretical and Applied Genetics
– volume: 7
  start-page: 404
  year: 2014
  end-page: 421
  article-title: SALT‐RESPONSIVE ERF1 is a negative regulator of grain filling and gibberellin‐mediated seedling establishment in rice
  publication-title: Molecular Plant
– volume: 7
  start-page: 210
  year: 2004
  end-page: 218
  article-title: Improving starch for food and industrial applications
  publication-title: Current Opinion in Plant Biology
– volume: 209
  start-page: 324
  year: 1999
  end-page: 329
  article-title: The relationship between the rate of starch synthesis, the adenosine 5’‐diphosphoglucose concentration and the amylose content of starch in developing pea embryos
  publication-title: Planta
– volume: 14
  start-page: 1767
  year: 2002
  end-page: 1785
  article-title: Discrete forms of amylose are synthesized by isoforms of GBSSI in pea
  publication-title: Plant Cell
– volume: 76
  start-page: 1591
  year: 2012
  end-page: 1595
  article-title: Interdomain disulfide bridge in the rice Granule Bound Starch Synthase I catalytic domain as elucidated by X‐ray structure analysis
  publication-title: Bioscience, Biotechnology, and Biochemistry
– volume: 88
  start-page: 103
  year: 2012
  end-page: 111
  article-title: Amylose content in starches: toward optimal definition and validating experimental methods
  publication-title: Carbohydrate Polymers
– volume: 4
  year: 2018
  article-title: Accelerated breeding of GBSS‐ and PTST1‐edited cassava for modified starch.
  publication-title: Advances
– volume: 101
  start-page: 237
  year: 1993
  end-page: 243
  article-title: Localization of branching enzyme in potato tuber cells with the use of immunoelectron microscopy
  publication-title: Plant Physiology
– volume: 196
  start-page: 702
  year: 2016
  end-page: 711
  article-title: The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains
  publication-title: Food Chemistry
– volume: 282
  start-page: 247
  year: 1996
  end-page: 62
  article-title: The chemical structure of amylose and amylopectin fractions of starch from tobacco leaves during development and diurnally‐nocturnally
  publication-title: Carbohydrate Research
– volume: 9
  start-page: 1
  year: 2018
  end-page: 19
  article-title: Crystal structures of the catalytic domain of starch synthase IV, of granule bound starch synthase from and of granule bound starch synthase I of illustrate substrate recognition in starch synthases
  publication-title: Frontiers in Plant Science
– volume: 30
  start-page: 3952
  year: 1997
  end-page: 3954
  article-title: Crystalline ultrastructure of starch granules revealed by synchrotron radiation microdiffraction mapping
  publication-title: Macromolecules
– volume: 73
  start-page: 2781
  year: 2016
  end-page: 2807
  article-title: Formation of starch in plant cells
  publication-title: Cellular and Molecular Life Sciences
– volume: 274
  start-page: 131
  year: 2005
  end-page: 140
  article-title: Diverse origins of waxy foxtail millet crops in East and Southeast Asia mediated by multiple transposable element insertions
  publication-title: Molecular Genetics and Genomics
– volume: 20
  start-page: 3448
  year: 2008
  end-page: 3466
  article-title: Starch granule biosynthesis in Arabidopsis is abolished by removal of all debranching enzymes but restored by the subsequent removal of an endoamylase
  publication-title: Plant Cell
– volume: 18
  start-page: 2096
  year: 2020
  end-page: 2108
  article-title: Non‐GMO potato lines, synthesizing increased amylose and resistant starch, are mainly deficient in isoamylase debranching enzyme
  publication-title: Plant Biotechnology Journal
– volume: 69
  start-page: 1013
  year: 2013
  end-page: 1025
  article-title: Structure of starch synthase I from barley: insight into regulatory mechanisms of starch synthase activity
  publication-title: Acta crystallographica. Section D, Biological Crystallography
– volume: 64
  start-page: 185
  year: 1989
  end-page: 192
  article-title: Molecular cloning and partial characterization of the gene for granule‐bound starch synthase from a wildtype and an amylose‐free potato ( L.)
  publication-title: Plant Science
– volume: 273
  start-page: 22232
  year: 1998
  end-page: 22240
  article-title: Amylose is synthesised in vitro by extention of and cleavage from amylopectin
  publication-title: Journal of Biological Chemistry
– volume: 25
  start-page: 623
  year: 2010
  end-page: 635
  article-title: Waxy strains of three amaranth grains raised by different mutations in the coding region
  publication-title: Molecular Breeding
– volume: 81
  start-page: 611
  year: 2004
  end-page: 620
  article-title: Structural properties of starch fractions isolated from normal and mutant corn genotypes using different methods
  publication-title: Cereal Chemistry
– volume: 104
  start-page: 1449
  year: 1994
  end-page: 1453
  article-title: Expression of branching enzyme I of maize endosperm in
  publication-title: Plant Physiology
– volume: 7
  start-page: 613
  year: 1995
  end-page: 622
  article-title: Post‐transcriptional regulation of the gene
  publication-title: The Plant Journal
– volume: 8
  start-page: 120
  year: 2008
  article-title: Arabidopsis At5g39790 encodes a chloroplast‐localized, carbohydrate‐binding, coiled‐coil domain‐containing putative scaffold protein
  publication-title: BMC Plant Biology
– volume: 266
  start-page: 724
  year: 1999
  end-page: 736
  article-title: Specificity of starch synthase isoforms from potato
  publication-title: European Journal of Biochemistry
– volume: 60
  start-page: 115
  year: 1990
  end-page: 122
  article-title: The wrinkled‐seed character of pea described by Mendel is caused by a transposon‐like insertion in a gene encoding starch‐branching enzyme
  publication-title: Cell
– volume: 4
  start-page: 191
  year: 1993
  end-page: 198
  article-title: Soluble isoforms of starch synthase and starch branching enzyme also occur within starch granules in developing pea embryos
  publication-title: The Plant Journal
– volume: 7
  start-page: 40124
  year: 2017
  article-title: encodes an ADP‐glucose transporter involved in starch synthesis and compound granule formation in rice endosperm
  publication-title: Scientific Reports
– volume: 8
  start-page: 1353
  year: 1996
  end-page: 1366
  article-title: Preamylopectin processing: a mandatory step for starch biosynthesis in plants
  publication-title: Plant Cell
– volume: 70
  start-page: 171
  year: 1993
  end-page: 179
  article-title: Characterization of starch structures of 17 maize endosperm mutant genotypes with Oh43 inbred line background
  publication-title: Cereal Chemistry
– volume: 340
  start-page: 183
  year: 1999b
  end-page: 191
  article-title: Granule‐bound starch synthase I in isolated starch granules elongates malto‐oligosaccharides processively
  publication-title: Biochemical Journal
– volume: 55
  start-page: 7469
  year: 2007
  end-page: 7476
  article-title: Discovery of an amylose‐free starch mutant in cassava ( Crantz)
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 46
  start-page: 299
  year: 1970
  end-page: 306
  article-title: Enzymes of carbohydrate metabolism in the developing endosperm of maize
  publication-title: Plant Physiology
– volume: 43
  start-page: 398
  year: 2005
  end-page: 412
  article-title: Soluble starch synthase I: a major determinant for the synthesis of amylopectin in leaves
  publication-title: The Plant Journal
– volume: 7
  year: 2012
  article-title: Diversification of genes encoding granule‐bound starch synthase in monocots and dicots is marked by multiple genome‐wide duplication events
  publication-title: PLoS ONE
– volume: 63
  start-page: 5859
  year: 2012
  end-page: 5872
  article-title: Elongated phytoglycogen chain length in transgenic rice endosperm expressing active starch synthase IIa affects the altered solubility and crystallinity of the storage α‐glucan
  publication-title: Journal of Experimental Botany
– volume: 62
  start-page: 4443
  year: 2014
  end-page: 4453
  article-title: Variation in amylose fine structure of starches from different botanical sources
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 25
  start-page: 536
  year: 2008
  end-page: 548
  article-title: Metabolic symbiosis and the birth of the plant kingdom
  publication-title: Molecular Biology and Evolution
– volume: 30
  start-page: 1523
  year: 2018
  end-page: 1542
  article-title: Two plastidial coiled‐coil proteins are essential for normal starch granule initiation in Arabidopsis
  publication-title: Plant Cell
– volume: 330
  start-page: 249
  year: 2001
  end-page: 256
  article-title: Internal structure of the starch granule revealed by AFM
  publication-title: Carbohydrate Research
– volume: 12
  start-page: 1157
  year: 2019
  end-page: 1166
  article-title: , the ancestral allele of rice gene
  publication-title: Molecular Plant
– volume: 111
  start-page: 821
  year: 1996
  end-page: 829
  article-title: Physical association of starch biosynthetic enzymes with starch granules of maize endosperm (granule‐associated forms of starch synthase I and starch branching enzyme II)
  publication-title: Plant Physiology
– volume: 129
  start-page: 516
  year: 2002b
  end-page: 529
  article-title: Starch synthesis in Arabidopsis. Granule synthesis, composition, and structure
  publication-title: Plant Physiology
– volume: 6
  start-page: 43
  year: 1994a
  end-page: 52
  article-title: Formation and deposition of amylose in the potato tuber starch granule are affected by the reduction of gene expression
  publication-title: Plant Cell
– volume: 53
  start-page: 504
  year: 2001
  end-page: 512
  article-title: Scattering studies of the internal structure of starch granules
  publication-title: Starch/Staerke
– volume: 18
  start-page: 362
  year: 2019a
  end-page: 379
  article-title: High‐amylose starches to bridge the “fiber gap”: Development, structure, and nutritional functionality
  publication-title: Comprehensive Reviews in Food Science and Food Safety
– volume: 448
  start-page: 373
  year: 2012b
  end-page: 387
  article-title: Glucan affinity of starch synthase IIa determines binding of starch synthase I and starch‐branching enzyme IIb to starch granules
  publication-title: Biochemical Journal
– volume: 39
  start-page: 52
  year: 1987
  end-page: 56
  article-title: Acceptor molecule of granular‐bound starch synthase from sweet‐potato roots
  publication-title: Starch – Stärke
– volume: 174
  start-page: 3612
  year: 1992
  end-page: 3620
  article-title: Waxy : monocellular algal mutants defective in amylose biosynthesis and granule‐bound starch synthase activity accumulate a structurally modified amylopectin
  publication-title: Journal of Bacteriology
– volume: 61
  start-page: 209
  year: 2010
  end-page: 234
  article-title: Starch: its metabolism, evolution, and biotechnological modification in plants
  publication-title: Annual Review of Plant Biology
– volume: 21
  start-page: 2443
  year: 2009
  end-page: 2457
  article-title: Starch granule initiation in Arabidopsis requires the presence of either class IV or class III starch synthases
  publication-title: The Plant Cell
– volume: 54
  start-page: 207
  year: 2003
  end-page: 233
  article-title: From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule
  publication-title: Annual Review of Plant Biology
– volume: 6
  start-page: 1
  year: 2016
  end-page: 17
  article-title: biochemical characterization of all barley endosperm starch synthases
  publication-title: Frontiers in Plant Science
– year: 1909
– volume: 63
  start-page: 1167
  year: 2012a
  end-page: 1183
  article-title: Allelic variants of the amylose extender mutation of maize demonstrate phenotypic variation in starch structure resulting from modified protein‐protein interactions
  publication-title: Journal of Experimental Botany
– volume: 20
  start-page: 1566
  year: 1997
  end-page: 1572
  article-title: Two isoforms of the GBSSI class of granule‐bound starch synthase are differentially expressed in the pea plant ( L.)
  publication-title: Plant, Cell & Environment
– volume: 92
  start-page: 121
  year: 1996
  end-page: 127
  article-title: The dosage effect of the wildtype GBSS allele is linear for GBSS activity but not for amylose content: absence of amylose has a distinct influence on the physico‐chemical properties of starch
  publication-title: Theoretical and Applied Genetics
– volume: 80
  start-page: 305
  year: 2014
  end-page: 316
  article-title: Starch synthase 4 is located in the thylakoid membrane and interacts with plastoglobule‐associated proteins in Arabidopsis
  publication-title: The Plant Journal
– volume: 62
  start-page: 4927
  year: 2011
  end-page: 4941
  article-title: Impact of down‐regulation of starch branching enzyme IIb in rice by artificial microRNA‐and hairpin RNA‐mediated RNA silencing
  publication-title: Journal of Experimental Botany
– volume: 182
  start-page: 870
  year: 2020
  end-page: 881
  article-title: Natural polymorphisms in Arabidopsis result in wide variation or loss of the amylose component of starch
  publication-title: Plant Physiology
– volume: 122
  start-page: 255
  year: 2000
  end-page: 264
  article-title: Wheat granule‐bound starch synthase I and II are encoded by separate genes that are expressed in different tissues
  publication-title: Plant Physiology
– volume: 125
  start-page: 1723
  year: 2001
  end-page: 1731
  article-title: Biochemical characterization of wild‐type and mutant isoamylases of supports a function of the multimeric enzyme organization in amylopectin maturation
  publication-title: Plant Physiology
– volume: 127
  start-page: 459
  year: 2001
  end-page: 472
  article-title: Biochemical and genetic analysis of the effects of amylose‐extender mutation in rice endosperm
  publication-title: Plant Physiology
– volume: 11
  start-page: 83
  year: 1974
  end-page: 96
  article-title: The function of the locus in starch synthesis in maize endosperm
  publication-title: Biochemical Genetics
– volume: 59
  start-page: 196
  year: 2014
  end-page: 202
  article-title: Use of advanced recombinant lines to study the impact and potential of mutations affecting starch synthesis in barley
  publication-title: Journal of Cereal Science
– volume: 68
  start-page: 931
  year: 2017
  end-page: 941
  article-title: Waxy and non‐waxy barley cultivars exhibit differences in the targeting and catalytic activity of GBSS1a
  publication-title: Journal of Experimental Botany
– volume: 12
  start-page: 396
  year: 1921
  end-page: 400
  article-title: Waxy endosperm in and sorghum
  publication-title: Journal of Heredity
– volume: 278
  start-page: 47803
  year: 2003
  end-page: 47811
  article-title: An interaction between a MYC protein and an EREBP protein is involved in transcriptional regulation of the rice gene
  publication-title: Journal of Biological Chemistry
– volume: 186
  start-page: 609
  year: 1992
  end-page: 617
  article-title: The purification and characterisation of the two forms of soluble starch synthase from developing pea embryos
  publication-title: Planta
– volume: 81
  start-page: 1031
  year: 2001
  end-page: 1064
  article-title: Short‐chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides
  publication-title: Physiological Reviews
– volume: 40
  start-page: 327
  year: 2006
  end-page: 331
  article-title: Waxy and low‐amylose mutants of bread wheat ( L.) and their starch, flour and grain properties
  publication-title: Japan Agricultural Research Quarterly
– volume: 51
  start-page: 949
  year: 2003
  end-page: 58
  article-title: Oscillation of mRNA level and activity of granule‐bound starch synthase I in Arabidopsis leaves during the day/night cycle
  publication-title: Plant Molecular Biology
– volume: 49
  start-page: 492
  year: 2007
  end-page: 504
  article-title: The phenotype of soluble starch synthase IV defective mutants of suggests a novel function of elongation enzymes in the control of starch granule formation
  publication-title: The Plant Journal
– volume: 46
  start-page: 341
  year: 1994
  end-page: 346
  article-title: Holes in starch granules: Confocal, SEM and light microscopy studies of starch granule structure
  publication-title: Starch – Stärke
– volume: 7
  start-page: 247
  year: 2008
  end-page: 257
  article-title: Pathway of cytosolic starch synthesis in the model glaucophyte
  publication-title: Eukaryotic Cell
– volume: 16
  start-page: 694
  year: 2004
  end-page: 708
  article-title: Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein–protein interactions
  publication-title: Plant Cell
– volume: 24
  start-page: 257
  year: 1933
  end-page: 262
  article-title: Inheritance of waxy endosperm in sorghum
  publication-title: Journal of Heredity
– volume: 67
  start-page: 209
  year: 1976
  end-page: 214
  article-title: Interaction of the amylose‐extender and waxy mutants of maize: dosage effects
  publication-title: Journal of Heredity
– ident: e_1_2_13_48_1
  doi: 10.1002/1521-379X(200110)53:10<504::AID-STAR504>3.0.CO;2-5
– volume: 653
  start-page: 647
  year: 1999
  ident: e_1_2_13_43_1
  article-title: Interaction with amylopectin influences the ability of granule‐bound starch synthase I to elongate malto‐oligosaccharides
  publication-title: Biochemical Journal
  doi: 10.1042/bj3420647
– volume: 9
  start-page: 1
  year: 2018
  ident: e_1_2_13_111_1
  article-title: Crystal structures of the catalytic domain of Arabidopsis thaliana starch synthase IV, of granule bound starch synthase from CLg1 and of granule bound starch synthase I of Cyanophora paradoxa illustrate substrate recognition in starch synthases
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2018.01138
– ident: e_1_2_13_5_1
  doi: 10.1002/star.19870390207
– ident: e_1_2_13_17_1
  doi: 10.1126/sciadv.aat6086
– ident: e_1_2_13_172_1
  doi: 10.1073/pnas.82.12.4177
– ident: e_1_2_13_134_1
  doi: 10.1105/tpc.17.00222
– ident: e_1_2_13_59_1
  doi: 10.1111/tpj.12633
– ident: e_1_2_13_87_1
  doi: 10.1007/s10973-006-7880-z
– ident: e_1_2_13_161_1
  doi: 10.1002/star.19970491103
– ident: e_1_2_13_164_1
  doi: 10.1093/jxb/ert187
– ident: e_1_2_13_33_1
  doi: 10.1107/S090744491300440X
– ident: e_1_2_13_76_1
  doi: 10.1002/star.19940460402
– ident: e_1_2_13_113_1
  doi: 10.1093/oxfordjournals.jhered.a109700
– ident: e_1_2_13_174_1
  doi: 10.1146/annurev-arplant-042809-112301
– ident: e_1_2_13_100_1
  doi: 10.1186/1471-2229-8-120
– ident: e_1_2_13_125_1
  doi: 10.1073/pnas.0510737103
– volume: 22
  start-page: 271
  year: 2010
  ident: e_1_2_13_127_1
  article-title: Progress in Arabidopsis starch research and potential biotechnological applications
  publication-title: Current Opinion in Biotechnology
  doi: 10.1016/j.copbio.2010.11.014
– ident: e_1_2_13_39_1
  doi: 10.1046/j.1365-313X.1996.10061135.x
– ident: e_1_2_13_140_1
  doi: 10.1007/BF02341037
– ident: e_1_2_13_129_1
  doi: 10.1105/tpc.19.00089
– ident: e_1_2_13_116_1
  doi: 10.1021/bm990016l
– ident: e_1_2_13_156_1
  doi: 10.1094/CCHEM.2004.81.5.611
– ident: e_1_2_13_171_1
  doi: 10.1002/star.201300238
– ident: e_1_2_13_29_1
  doi: 10.5962/bhl.title.37128
– ident: e_1_2_13_38_1
  doi: 10.1046/j.1365-3040.1997.d01-48.x
– ident: e_1_2_13_51_1
  doi: 10.1105/tpc.002907
– ident: e_1_2_13_31_1
  doi: 10.1046/j.1365-313x.2001.01012.x
– ident: e_1_2_13_63_1
  doi: 10.1093/jxb/ern198
– ident: e_1_2_13_95_1
  doi: 10.1016/j.plantsci.2013.05.019
– ident: e_1_2_13_64_1
  doi: 10.1104/pp.104.4.1449
– ident: e_1_2_13_126_1
  doi: 10.1111/j.1365-313X.2006.02968.x
– ident: e_1_2_13_73_1
  doi: 10.5458/jag.52.239
– ident: e_1_2_13_138_1
  doi: 10.1371/journal.pbio.1002080
– ident: e_1_2_13_154_1
  doi: 10.1104/pp.46.2.299
– ident: e_1_2_13_92_1
  doi: 10.1111/1541-4337.12416
– ident: e_1_2_13_90_1
  doi: 10.1007/BF00019490
– ident: e_1_2_13_89_1
  doi: 10.2307/3869673
– ident: e_1_2_13_112_1
  doi: 10.1104/pp.010127
– ident: e_1_2_13_9_1
  doi: 10.3390/agronomy7030056
– ident: e_1_2_13_37_1
  doi: 10.1111/j.1365-313X.2005.02462.x
– ident: e_1_2_13_79_1
  doi: 10.1016/0141-8130(96)81838-1
– ident: e_1_2_13_86_1
  doi: 10.1016/j.ijbiomac.2007.07.005
– ident: e_1_2_13_4_1
  doi: 10.1271/bbb1961.49.1973
– volume: 48
  start-page: 1763
  year: 1984
  ident: e_1_2_13_3_1
  article-title: Structural characterization of amylopectin and intermediate material in amylomaize starch granules
  publication-title: Agricultural and Biological Chemistry
– ident: e_1_2_13_85_1
  doi: 10.1007/s11248-011-9507-9
– ident: e_1_2_13_114_1
  doi: 10.1093/genetics/162.2.941
– ident: e_1_2_13_35_1
  doi: 10.1104/pp.125.4.1723
– ident: e_1_2_13_50_1
  doi: 10.1046/j.1432-1327.1999.00861.x
– ident: e_1_2_13_10_1
  doi: 10.1016/0092-8674(90)90721-P
– ident: e_1_2_13_166_1
  doi: 10.1016/j.carbpol.2015.03.081
– ident: e_1_2_13_60_1
  doi: 10.1016/S0008-6215(00)80215-3
– ident: e_1_2_13_19_1
  doi: 10.1093/jxb/err188
– ident: e_1_2_13_118_1
  doi: 10.1007/s11032-009-9360-1
– ident: e_1_2_13_109_1
  doi: 10.1104/pp.118.2.451
– ident: e_1_2_13_45_1
  doi: 10.1093/molbev/msm280
– ident: e_1_2_13_173_1
  doi: 10.6090/jarq.40.327
– ident: e_1_2_13_101_1
  doi: 10.1002/bip.21005
– ident: e_1_2_13_83_1
  doi: 10.1007/s00438-005-0013-8
– ident: e_1_2_13_136_1
  doi: 10.1105/tpc.18.00219
– ident: e_1_2_13_131_1
  doi: 10.1186/1756-0500-6-84
– ident: e_1_2_13_145_1
  doi: 10.1105/tpc.109.066522
– volume: 62
  start-page: 948
  year: 2019
  ident: e_1_2_13_168_1
  article-title: GBSS‐BINDING PROTEIN, encoding a CBM48 domain‐containing protein, affects rice quality and yield
  publication-title: Journal of Integrative Plant Biology
  doi: 10.1111/jipb.12866
– ident: e_1_2_13_68_1
  doi: 10.1093/jxb/erw503
– ident: e_1_2_13_119_1
  doi: 10.1104/pp.005454
– ident: e_1_2_13_122_1
  doi: 10.1007/s00018-016-2250-x
– ident: e_1_2_13_177_1
  doi: 10.1016/j.molp.2019.05.011
– ident: e_1_2_13_105_1
  doi: 10.1002/j.2050-0416.1969.tb03194.x
– ident: e_1_2_13_144_1
  doi: 10.1093/pcp/pcs190
– ident: e_1_2_13_6_1
  doi: 10.1016/S0008-6215(00)00275-5
– ident: e_1_2_13_88_1
  doi: 10.1104/pp.101.1.237
– ident: e_1_2_13_179_1
  doi: 10.1186/1471-2229-8-96
– ident: e_1_2_13_80_1
  doi: 10.1016/j.pbi.2003.12.001
– ident: e_1_2_13_147_1
  doi: 10.1016/j.carbpol.2018.09.078
– ident: e_1_2_13_70_1
  doi: 10.1007/BF00249167
– ident: e_1_2_13_2_1
  doi: 10.1105/tpc.19.00946
– ident: e_1_2_13_16_1
  doi: 10.1021/ma970136q
– ident: e_1_2_13_139_1
  doi: 10.1007/s10126-006-6104-7
– ident: e_1_2_13_110_1
  doi: 10.1007/BF02191591
– ident: e_1_2_13_151_1
  doi: 10.1046/j.1365-313x.1998.00317.x
– ident: e_1_2_13_106_1
  doi: 10.1271/bbb.120305
– ident: e_1_2_13_162_1
  doi: 10.1104/pp.122.1.255
– ident: e_1_2_13_141_1
  doi: 10.1104/pp.104.044347
– ident: e_1_2_13_77_1
  doi: 10.1016/0008-6215(93)84260-D
– ident: e_1_2_13_23_1
  doi: 10.1104/pp.63.5.973
– ident: e_1_2_13_18_1
  doi: 10.1002/star.201200211
– ident: e_1_2_13_46_1
  doi: 10.1128/EC.00380-05
– ident: e_1_2_13_28_1
  doi: 10.1104/pp.120.4.993
– ident: e_1_2_13_40_1
  doi: 10.1078/0176-1617-00360
– ident: e_1_2_13_58_1
  doi: 10.1104/pp.107.102533
– ident: e_1_2_13_128_1
  doi: 10.1093/mp/sst131
– ident: e_1_2_13_72_1
  doi: 10.1093/molbev/msq040
– ident: e_1_2_13_102_1
  doi: 10.1016/0008-6215(95)00381-9
– ident: e_1_2_13_13_1
  doi: 10.1093/oxfordjournals.jhered.a108711
– ident: e_1_2_13_26_1
  doi: 10.1371/journal.pone.0030088
– ident: e_1_2_13_54_1
  doi: 10.1105/tpc.16.00011
– ident: e_1_2_13_155_1
  doi: 10.1111/pbi.13137
– volume: 70
  start-page: 171
  year: 1993
  ident: e_1_2_13_169_1
  article-title: Characterization of starch structures of 17 maize endosperm mutant genotypes with Oh43 inbred line background
  publication-title: Cereal Chemistry
– ident: e_1_2_13_104_1
  doi: 10.1111/j.1469-8137.1981.tb04568.x
– ident: e_1_2_13_94_1
  doi: 10.1038/srep40124
– ident: e_1_2_13_99_1
  doi: 10.1093/jxb/47.2.171
– ident: e_1_2_13_24_1
  doi: 10.1002/star.200600515
– ident: e_1_2_13_149_1
  doi: 10.1023/A:1023053420632
– ident: e_1_2_13_130_1
  doi: 10.1038/75427
– ident: e_1_2_13_65_1
  doi: 10.1104/pp.102.4.1269
– ident: e_1_2_13_135_1
  doi: 10.1104/pp.19.01062
– ident: e_1_2_13_153_1
  doi: 10.1007/BF00485766
– volume: 7
  start-page: 117
  year: 2016
  ident: e_1_2_13_142_1
  article-title: Improving waxy maize, the heritage of South East Asia
  publication-title: International Journal of Environmental and Rural Development
– volume: 16
  start-page: 70
  year: 1963
  ident: e_1_2_13_103_1
  article-title: Diurnal‐nocturnal changes in the starch of tobacco leaves
  publication-title: Australian Journal of Biological Sciences
  doi: 10.1071/BI9630070
– volume: 60
  start-page: 172
  year: 2016
  ident: e_1_2_13_52_1
  article-title: Variation and geographical distribution of perisperm starch in grain Amaranths (Amaranthus spp.), and the origin of waxy perisperm type
  publication-title: Tropical Agriculture and Development
– ident: e_1_2_13_107_1
  doi: 10.2307/3870306
– ident: e_1_2_13_74_1
  doi: 10.1093/pcp/pcg068
– ident: e_1_2_13_75_1
  doi: 10.1094/CCHEM.1999.76.5.629
– ident: e_1_2_13_61_1
  doi: 10.1094/CCHEM-11-12-0141-FI
– ident: e_1_2_13_53_1
  doi: 10.1007/s11032-008-9178-2
– volume: 12
  start-page: 396
  year: 1921
  ident: e_1_2_13_84_1
  article-title: Waxy endosperm in Coix and sorghum
  publication-title: Journal of Heredity
  doi: 10.1093/oxfordjournals.jhered.a102131
– ident: e_1_2_13_150_1
  doi: 10.1105/tpc.017400
– ident: e_1_2_13_152_1
  doi: 10.1152/physrev.2001.81.3.1031
– volume: 71
  start-page: 282
  year: 1994
  ident: e_1_2_13_82_1
  article-title: Location of amylose in normal starch granules. II: Locations of phosphodiester cross‐linking revealed by phosphorus‐31 nuclear magnetic resonance
  publication-title: Cereal Chemistry
– ident: e_1_2_13_148_1
  doi: 10.1046/j.1365-3040.1999.00437.x
– ident: e_1_2_13_97_1
  doi: 10.1042/BJ20120573
– ident: e_1_2_13_32_1
  doi: 10.5458/jag.jag.JAG-2018_005
– ident: e_1_2_13_15_1
  doi: 10.1016/j.bbagen.2013.08.029
– ident: e_1_2_13_30_1
  doi: 10.1016/S0065-2113(08)60859-7
– ident: e_1_2_13_67_1
  doi: 10.5458/jag.52.233
– ident: e_1_2_13_115_1
  doi: 10.1105/tpc.114.122721
– ident: e_1_2_13_178_1
  doi: 10.1111/jipb.12620
– ident: e_1_2_13_8_1
  doi: 10.1146/annurev.arplant.54.031902.134927
– ident: e_1_2_13_7_1
  doi: 10.1002/star.19940460906
– ident: e_1_2_13_14_1
  doi: 10.5458/jag.jag.JAG-2012_018
– ident: e_1_2_13_47_1
  doi: 10.1007/s00425-003-1101-9
– volume: 24
  start-page: 257
  year: 1933
  ident: e_1_2_13_81_1
  article-title: Inheritance of waxy endosperm in sorghum
  publication-title: Journal of Heredity
  doi: 10.1093/oxfordjournals.jhered.a103794
– volume: 71
  start-page: 1
  year: 2019
  ident: e_1_2_13_91_1
  article-title: The role of pullulanase in starch biosynthesis, structure, and thermal properties by studying sorghum with increased pullulanase activity
  publication-title: Starch/Staerke
– ident: e_1_2_13_36_1
  doi: 10.1128/jb.174.11.3612-3620.1992
– ident: e_1_2_13_137_1
  doi: 10.1093/jxb/ery412
– ident: e_1_2_13_98_1
  doi: 10.1007/s004250050627
– ident: e_1_2_13_108_1
  doi: 10.1104/pp.111.3.821
– ident: e_1_2_13_167_1
  doi: 10.1016/j.carbpol.2011.09.093
– ident: e_1_2_13_180_1
  doi: 10.1093/jxb/ery398
– ident: e_1_2_13_21_1
  doi: 10.1021/bm900426n
– ident: e_1_2_13_20_1
  doi: 10.1186/1471-2229-12-223
– ident: e_1_2_13_71_1
  doi: 10.1016/j.jcs.2013.12.012
– ident: e_1_2_13_96_1
  doi: 10.1093/jxb/err341
– ident: e_1_2_13_175_1
  doi: 10.1104/pp.010640
– volume: 62
  start-page: 832
  year: 2019
  ident: e_1_2_13_181_1
  article-title: Production of very‐high‐amylose cassava by post‐transcriptional silencing of branching enzyme genes
  publication-title: Journal of Integrative Plant Biology
  doi: 10.1111/jipb.12848
– ident: e_1_2_13_133_1
  doi: 10.1111/j.1439-0523.2012.02004.x
– ident: e_1_2_13_56_1
  doi: 10.1007/BF00222961
– ident: e_1_2_13_57_1
  doi: 10.1093/jxb/ers235
– start-page: 222
  year: 1962
  ident: e_1_2_13_62_1
  article-title: Physicochemical studies on starches. Part XXIV. The fractionation and characterization of starches of various plant origins
  publication-title: Journal of the Chemical Society
  doi: 10.1039/jr9620000222
– ident: e_1_2_13_55_1
  doi: 10.1007/BF00223647
– ident: e_1_2_13_22_1
  doi: 10.1021/jf070633y
– ident: e_1_2_13_27_1
  doi: 10.1007/s004250050639
– ident: e_1_2_13_143_1
  doi: 10.1105/tpc.108.063487
– ident: e_1_2_13_157_1
  doi: 10.1074/jbc.271.27.16281
– ident: e_1_2_13_25_1
  doi: 10.1186/s12870-017-1118-z
– ident: e_1_2_13_93_1
  doi: 10.1016/j.foodchem.2015.09.112
– ident: e_1_2_13_49_1
  doi: 10.1046/j.1365-313X.1992.t01-42-00999.x
– ident: e_1_2_13_120_1
  doi: 10.1007/s10681-005-5298-5
– ident: e_1_2_13_11_1
  doi: 10.1016/j.jsb.2003.08.009
– ident: e_1_2_13_44_1
  doi: 10.1042/0264-6021:3400183
– ident: e_1_2_13_160_1
  doi: 10.1016/0168-9452(89)90023-X
– ident: e_1_2_13_170_1
  doi: 10.1046/j.1365-313X.1995.7040613.x
– ident: e_1_2_13_117_1
  doi: 10.1007/s00239-009-9300-z
– ident: e_1_2_13_158_1
  doi: 10.1094/CCHEM.2004.81.3.377
– ident: e_1_2_13_146_1
  doi: 10.1016/0008-6215(87)80008-3
– ident: e_1_2_13_42_1
  doi: 10.1007/BF00198043
– ident: e_1_2_13_121_1
  doi: 10.1016/j.carbpol.2018.05.049
– ident: e_1_2_13_176_1
  doi: 10.1104/pp.003756
– ident: e_1_2_13_182_1
  doi: 10.1074/jbc.M302806200
– ident: e_1_2_13_124_1
  doi: 10.1104/pp.106.081885
– ident: e_1_2_13_41_1
  doi: 10.1046/j.1365-313X.1993.04010191.x
– ident: e_1_2_13_12_1
  doi: 10.1111/pbi.13367
– volume: 69
  start-page: 405
  year: 1992
  ident: e_1_2_13_78_1
  article-title: Location of amylose in normal starch granules. I: Susceptibility of amylose and amylopectin to cross‐linking reagents
  publication-title: Cereal Chemistry
– ident: e_1_2_13_66_1
  doi: 10.1093/pcp/pcn066
– ident: e_1_2_13_132_1
  doi: 10.1016/j.cub.2009.01.044
– ident: e_1_2_13_123_1
  doi: 10.1128/EC.00373-07
– ident: e_1_2_13_34_1
  doi: 10.3389/fpls.2015.01265
– ident: e_1_2_13_159_1
  doi: 10.1016/j.carbpol.2011.11.072
– volume: 9
  start-page: 1
  year: 2018
  ident: e_1_2_13_69_1
  article-title: Proteome analysis of potato starch reveals the presence of new starch metabolic proteins as well as multiple protease inhibitors
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2018.00746
– ident: e_1_2_13_165_1
  doi: 10.1021/jf5011676
– ident: e_1_2_13_163_1
  doi: 10.1074/jbc.273.35.22232
SSID ssj0009562
Score 2.671967
SecondaryResourceType review_article
Snippet Starch granules are composed of two distinct glucose polymers – amylose and amylopectin. Amylose constitutes 5–35% of most natural starches and has a major...
Summary Starch granules are composed of two distinct glucose polymers – amylose and amylopectin. Amylose constitutes 5–35% of most natural starches and has a...
Starch granules are composed of two distinct glucose polymers - amylose and amylopectin. Amylose constitutes 5-35% of most natural starches and has a major...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1490
SubjectTerms Amylopectin
Amylose
Analytical methods
Biosynthesis
carbohydrate
Fine structure
Glucans
glucose
Glucosyltransferase
Granular materials
GRANULE BOUND STARCH SYNTHASE (GBSS)
Polymers
Questions
Starch
starch granules
Starch synthase
Starch Synthase - genetics
starch synthesis
Starches
Storage
Structure-function relationships
Tansley review
Ultrastructure
Wild plants
Subtitle towards an understanding of biosynthesis, structure and function
Title Amylose in starch
URI https://www.jstor.org/stable/26968196
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.16858
https://www.ncbi.nlm.nih.gov/pubmed/32767769
https://www.proquest.com/docview/2456707181
https://www.proquest.com/docview/2431825120
https://www.proquest.com/docview/2561550674
Volume 228
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RxKGXUmhpQwGZqocemlXiOHbSnigCrTggBEXaQ6XIztrqqiVBZPcAv54Z56GlohXiFiljyfY8_Nkz_gzwSWRTk5tYhJkw01DkwoU65WmYGZE4KTnR8FG1xakcX4qTSTpZgW_9XZiWH2I4cCPP8PGaHFybZsnJq-tfo5jY0zH-Uq0WAaJzvkS4K3nPwCyFnHSsQlTFM7R8sBa15YiPAc2HuNUvPMfr8LPvcltv8nu0mJtRefcXm-Mzx_QaXnWAlB20FrQBK7bahLXvNYLG2zdwcXCFO_rGslnFEEeiU3xlc19p2zBdscXy1RhWO2ZmdXNbIahsZs0X1pLTLm4syk4ZLaFkBm_h8vjox-E47N5hCEshMB7GNp_KXJlIoz4RMCnOlZNlJKOEsnIm09oYmzqhnObO5qnNUmFR2AoZa4Q8W7Ba1ZV9DyxyCMCSMtI6x52d0Rm2sKnSiTKZyxMbwOdeI0XZkZTTWxl_in6zglNU-CkK4OMget0yczwmtOXVOkhwIgPCqBPATq_novPapqAksELMlcUB7A-_0d8oiaIrWy9IBqMggcLoPzIpZXsRB4gA3rU2NHQg4UoqJXMcqbeEf_e9OD0b-4_tp4t-gJecDgR8vc0OrKKa7S6iprnZgxdcnO15J7kHuqYSjA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VgkQv_LcEChgEEgeyShzHTpA4FEq1pWWFoJX2FuysLVaUpCK7Qttn6qvwTszkT1tUEJceuEXKJBrbM-PPnvFngKcimZjUhMJPhJn4IhXO1zGP_cSIyEnJiYaPqi1Gcngo3o3j8QqcdmdhGn6IfsONPKOO1-TgtCG95OXF8ZdBSPTpbUnlnl38wAVb9Wp3G0f3Gec7bw_eDP32TgE_FwJ9O7TpRKbKBBp1w8lfca6czAMZRJRhMonWxtjYCeU0dzaNbRILi8JWyFDj9I3_vQSX6QZxYurf_siXKH4l7zifpZDjlseI6oZ6Vc_Mfk0B5HnQ9ixSrqe6nevws-ukpsLl62A-M4P85Df-yP-lF2_AtRZzs63GSW7Cii1uwZXXJeLixW34tPVtcVRWlk0LhlAZlXvJZnUxccV0webLp39Y6ZiZltWiQNxcTasXrOHfnX-3KDthhBLI0u_A4YU0aB1Wi7Kwd4EFDjFmlAdap7h4NTrBL2ysdKRM4tLIevC8M4Esb3nY6TqQo6xbj-GQZPWQePCkFz1uyEfOE1qv7aiX4MR3hIHVg83OsLI2MFUZ5bkVwsok9OBx_xpDCuWJdGHLOclgoCfcG_xFJqaENkId4cFGY7S9AhFXUimZYktr0_uz7tnow7B-uPfvoo_g6vDg_X62vzvauw9rnPY_6vKiTVjFIbcPECTOzMPaNxl8vmgz_gXoI295
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qFfGl1I9qatVVFHwwkmw2u0nBh2o9rlaOAy3cW7p72cUDTQ7TQ-5v8p90ZvPBFar40rdAJmEys7Pz253ZXwBeiqw0uYlFmAlThiIXLtQpT8PMiMRJyYmGj7otJnJ8Jj7N0tkW_O7PwrT8EMOGG0WGn68pwJel2wjyavntbUzs6V1H5ald_8L1WvPu5Bid-4rz0cevH8Zh90uBcC4EhnZs81LmykQaVcPcrzhXTs4jGSVUYDKZ1sbY1AnlNHc2T22WCovCVshYY_bG996Am1RcpP4xLqYbDL-S95TPUshZR2NEbUODqpeSX9v_eBWyvQyUfaYb7cJOB1HZUTum7sKWre7Brfc1wsj1ffhy9APX-I1li4ohskSTHLIL33vbMF2x1eZhGVY7ZhZ1s64QZjaL5g1r6WpXPy3KloySKg2MB3B2LWbcg-2qruwjYJFDSJbMI61zXOsZneETNlU6USZzeWIDeN2brJh3tOX094zvRb98QesW3roBvBhEly1Xx1VCe97ugwQneiCchwI46B1RdHHcFFQWVojCsjiA58NtjEAqq-jK1iuSwXmRYGL0D5mU6r-IDEQAD1snDwokXEmlZI5f6r3-d92LyXTsL_b_X_QZ3J4ej4rPJ5PTx3CH026Bb8Y5gG30uH2CkOrCPPVDmcH5dcfOH7xKLe4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amylose+in+starch%3A+towards+an+understanding+of+biosynthesis%2C+structure+and+function&rft.jtitle=The+New+phytologist&rft.au=Seung%2C+David&rft.date=2020-12-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=228&rft.issue=5&rft.spage=1490&rft.epage=1504&rft_id=info:doi/10.1111%2Fnph.16858&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_nph_16858
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon