Amylose in starch towards an understanding of biosynthesis, structure and function

Starch granules are composed of two distinct glucose polymers – amylose and amylopectin. Amylose constitutes 5–35% of most natural starches and has a major influence over starch properties in foods. Its synthesis and storage occurs within the semicrystalline amylopectin matrix of starch granules, th...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 228; no. 5; pp. 1490 - 1504
Main Author Seung, David
Format Journal Article
LanguageEnglish
Published England Wiley 01.12.2020
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Starch granules are composed of two distinct glucose polymers – amylose and amylopectin. Amylose constitutes 5–35% of most natural starches and has a major influence over starch properties in foods. Its synthesis and storage occurs within the semicrystalline amylopectin matrix of starch granules, this poses a great challenge for biochemical and structural analyses. However, the last two decades have seen vast progress in understanding amylose synthesis, including new insights into the action of GRANULE BOUND STARCH SYNTHASE (GBSS), the major glucosyltransferase that synthesises amylose, and the discovery of PROTEIN TARGETING TO STARCH1 (PTST1) that targets GBSS to starch granules. Advances in analytical techniques have resolved the fine structure of amylose, raising new questions on how structure is determined during biosynthesis. Furthermore, the discovery of wild plants that do not produce amylose revives a long-standing question of why starch granules contain amylose, rather than amylopectin alone. Overall, these findings contribute towards a full understanding of amylose biosynthesis, structure and function that will be essential for future approaches to improve starch quality in crops.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:0028-646X
1469-8137
1469-8137
DOI:10.1111/nph.16858