The impact of T1 versus EPI spatial normalization templates for fMRI data analyses

Spatial normalization of brains to a standardized space is a widely used approach for group studies in functional magnetic resonance imaging (fMRI) data. Commonly used template‐based approaches are complicated by signal dropout and distortions in echo planar imaging (EPI) data. The most widely used...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 38; no. 11; pp. 5331 - 5342
Main Authors Calhoun, Vince D., Wager, Tor D., Krishnan, Anjali, Rosch, Keri S., Seymour, Karen E., Nebel, Mary Beth, Mostofsky, Stewart H., Nyalakanai, Prashanth, Kiehl, Kent
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.11.2017
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spatial normalization of brains to a standardized space is a widely used approach for group studies in functional magnetic resonance imaging (fMRI) data. Commonly used template‐based approaches are complicated by signal dropout and distortions in echo planar imaging (EPI) data. The most widely used software packages implement two common template‐based strategies: (1) affine transformation of the EPI data to an EPI template followed by nonlinear registration to an EPI template (EPInorm) and (2) affine transformation of the EPI data to the anatomic image for a given subject, followed by nonlinear registration of the anatomic data to an anatomic template, which produces a transformation that is applied to the EPI data (T1norm). EPI distortion correction can be used to adjust for geometric distortion of EPI relative to the T1 images. However, in practice, this EPI distortion correction step is often skipped. We compare these template‐based strategies empirically in four large datasets. We find that the EPInorm approach consistently shows reduced variability across subjects, especially in the case when distortion correction is not applied. EPInorm also shows lower estimates for coregistration distances among subjects (i.e., within‐dataset similarity is higher). Finally, the EPInorm approach shows higher T values in a task‐based dataset. Thus, the EPInorm approach appears to amplify the power of the sample compared to the T1norm approach when not using distortion correction (i.e., the EPInorm boosts the effective sample size by 12–25%). In sum, these results argue for the use of EPInorm over the T1norm when no distortion correction is used. Hum Brain Mapp 38:5331–5342, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
AbstractList Spatial normalization of brains to a standardized space is a widely used approach for group studies in functional magnetic resonance imaging (fMRI) data. Commonly used template‐based approaches are complicated by signal dropout and distortions in echo planar imaging (EPI) data. The most widely used software packages implement two common template‐based strategies: (1) affine transformation of the EPI data to an EPI template followed by nonlinear registration to an EPI template (EPInorm) and (2) affine transformation of the EPI data to the anatomic image for a given subject, followed by nonlinear registration of the anatomic data to an anatomic template, which produces a transformation that is applied to the EPI data (T1norm). EPI distortion correction can be used to adjust for geometric distortion of EPI relative to the T1 images. However, in practice, this EPI distortion correction step is often skipped. We compare these template‐based strategies empirically in four large datasets. We find that the EPInorm approach consistently shows reduced variability across subjects, especially in the case when distortion correction is not applied. EPInorm also shows lower estimates for coregistration distances among subjects (i.e., within‐dataset similarity is higher). Finally, the EPInorm approach shows higher T values in a task‐based dataset. Thus, the EPInorm approach appears to amplify the power of the sample compared to the T1norm approach when not using distortion correction (i.e., the EPInorm boosts the effective sample size by 12–25%). In sum, these results argue for the use of EPInorm over the T1norm when no distortion correction is used. Hum Brain Mapp 38:5331–5342, 2017 . © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Spatial normalization of brains to a standardized space is a widely used approach for group studies in functional magnetic resonance imaging (fMRI) data. Commonly used template-based approaches are complicated by signal dropout and distortions in echo planar imaging (EPI) data. The most widely used software packages implement two common template-based strategies: (1) affine transformation of the EPI data to an EPI template followed by nonlinear registration to an EPI template (EPInorm) and (2) affine transformation of the EPI data to the anatomic image for a given subject, followed by nonlinear registration of the anatomic data to an anatomic template, which produces a transformation that is applied to the EPI data (T1norm). EPI distortion correction can be used to adjust for geometric distortion of EPI relative to the T1 images. However, in practice, this EPI distortion correction step is often skipped. We compare these template-based strategies empirically in four large datasets. We find that the EPInorm approach consistently shows reduced variability across subjects, especially in the case when distortion correction is not applied. EPInorm also shows lower estimates for coregistration distances among subjects (i.e., within-dataset similarity is higher). Finally, the EPInorm approach shows higher T values in a task-based dataset. Thus, the EPInorm approach appears to amplify the power of the sample compared to the T1norm approach when not using distortion correction (i.e., the EPInorm boosts the effective sample size by 12-25%). In sum, these results argue for the use of EPInorm over the T1norm when no distortion correction is used. Hum Brain Mapp 38:5331-5342, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Spatial normalization of brains to a standardized space is a widely used approach for group studies in functional magnetic resonance imaging (fMRI) data. Commonly used template-based approaches are complicated by signal dropout and distortions in echo planar imaging (EPI) data. The most widely used software packages implement two common template-based strategies: (1) affine transformation of the EPI data to an EPI template followed by nonlinear registration to an EPI template (EPInorm) and (2) affine transformation of the EPI data to the anatomic image for a given subject, followed by nonlinear registration of the anatomic data to an anatomic template, which produces a transformation that is applied to the EPI data (T1norm). EPI distortion correction can be used to adjust for geometric distortion of EPI relative to the T1 images. However, in practice, this EPI distortion correction step is often skipped. We compare these template-based strategies empirically in four large datasets. We find that the EPInorm approach consistently shows reduced variability across subjects, especially in the case when distortion correction is not applied. EPInorm also shows lower estimates for coregistration distances among subjects (i.e., within-dataset similarity is higher). Finally, the EPInorm approach shows higher T values in a task-based dataset. Thus, the EPInorm approach appears to amplify the power of the sample compared to the T1norm approach when not using distortion correction (i.e., the EPInorm boosts the effective sample size by 12-25%). In sum, these results argue for the use of EPInorm over the T1norm when no distortion correction is used. Hum Brain Mapp 38:5331-5342, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.Spatial normalization of brains to a standardized space is a widely used approach for group studies in functional magnetic resonance imaging (fMRI) data. Commonly used template-based approaches are complicated by signal dropout and distortions in echo planar imaging (EPI) data. The most widely used software packages implement two common template-based strategies: (1) affine transformation of the EPI data to an EPI template followed by nonlinear registration to an EPI template (EPInorm) and (2) affine transformation of the EPI data to the anatomic image for a given subject, followed by nonlinear registration of the anatomic data to an anatomic template, which produces a transformation that is applied to the EPI data (T1norm). EPI distortion correction can be used to adjust for geometric distortion of EPI relative to the T1 images. However, in practice, this EPI distortion correction step is often skipped. We compare these template-based strategies empirically in four large datasets. We find that the EPInorm approach consistently shows reduced variability across subjects, especially in the case when distortion correction is not applied. EPInorm also shows lower estimates for coregistration distances among subjects (i.e., within-dataset similarity is higher). Finally, the EPInorm approach shows higher T values in a task-based dataset. Thus, the EPInorm approach appears to amplify the power of the sample compared to the T1norm approach when not using distortion correction (i.e., the EPInorm boosts the effective sample size by 12-25%). In sum, these results argue for the use of EPInorm over the T1norm when no distortion correction is used. Hum Brain Mapp 38:5331-5342, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Author Wager, Tor D.
Rosch, Keri S.
Nebel, Mary Beth
Seymour, Karen E.
Mostofsky, Stewart H.
Kiehl, Kent
Nyalakanai, Prashanth
Calhoun, Vince D.
Krishnan, Anjali
AuthorAffiliation 4 University of Colorado at Boulder Boulder Colorado
2 Department of ECE University of New Mexico Albuquerque New Mexico
3 Department of Psychology University of New Mexico Albuquerque New Mexico
1 The Mind Research Network & LBERI Albuquerque New Mexico
5 Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute Baltimore Maryland
7 Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland
6 Department of Psychiatry and Behavioral Sciences Johns Hopkins University School of Medicine Baltimore Maryland
AuthorAffiliation_xml – name: 6 Department of Psychiatry and Behavioral Sciences Johns Hopkins University School of Medicine Baltimore Maryland
– name: 4 University of Colorado at Boulder Boulder Colorado
– name: 5 Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute Baltimore Maryland
– name: 2 Department of ECE University of New Mexico Albuquerque New Mexico
– name: 1 The Mind Research Network & LBERI Albuquerque New Mexico
– name: 7 Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland
– name: 3 Department of Psychology University of New Mexico Albuquerque New Mexico
Author_xml – sequence: 1
  givenname: Vince D.
  orcidid: 0000-0001-9058-0747
  surname: Calhoun
  fullname: Calhoun, Vince D.
  email: vcalhoun@unm.edu
  organization: University of New Mexico
– sequence: 2
  givenname: Tor D.
  surname: Wager
  fullname: Wager, Tor D.
  organization: University of Colorado at Boulder
– sequence: 3
  givenname: Anjali
  surname: Krishnan
  fullname: Krishnan, Anjali
  organization: University of Colorado at Boulder
– sequence: 4
  givenname: Keri S.
  surname: Rosch
  fullname: Rosch, Keri S.
  organization: Johns Hopkins University School of Medicine
– sequence: 5
  givenname: Karen E.
  surname: Seymour
  fullname: Seymour, Karen E.
  organization: Johns Hopkins University School of Medicine
– sequence: 6
  givenname: Mary Beth
  surname: Nebel
  fullname: Nebel, Mary Beth
  organization: Johns Hopkins University School of Medicine
– sequence: 7
  givenname: Stewart H.
  surname: Mostofsky
  fullname: Mostofsky, Stewart H.
  organization: Johns Hopkins University School of Medicine
– sequence: 8
  givenname: Prashanth
  surname: Nyalakanai
  fullname: Nyalakanai, Prashanth
  organization: The Mind Research Network & LBERI
– sequence: 9
  givenname: Kent
  surname: Kiehl
  fullname: Kiehl, Kent
  organization: University of New Mexico
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28745021$$D View this record in MEDLINE/PubMed
BookMark eNp1kV1PHCEYhYnR-NVe-Acakt7Yi1FgYJi5MWmNH5to2pjtNWHxpYthhhFmNNtfL-uuRk17BYTnPTnvOXtoswsdIHRAyRElhB3PZ-0RK2UpN9AuJY0sCG3KzeW9EkXDJd1BeyndEUKpIHQb7bBackEY3UU30zlg1_baDDhYPKX4AWIaEz77NcGp14PTHnchttq7v_kVOjxA23s9QMI2RGyvbyb4Vg8a6077RYL0CW1Z7RN8Xp_76Pf52fT0srj6eTE5_X5VGM5LWRjGzUwKLa1ojDEaWM0sBSAg66qeWeAVNJYbW5JakFoaoFrUHEhlS854Ve6jk5VuP85auDXQDVF71UfX6rhQQTv1_qdzc_UnPCghqizEs8DhWiCG-xHSoFqXDHivOwhjUrTJoeacyBL9-gG9C2PMCy8pLjllgshMfXnr6NXKS9wZOF4BJoaUIlhl3PCcajbovKJELQtVuVD1XGie-PZh4kX0X-xa_dF5WPwfVJc_rlcTTyByrt0
CitedBy_id crossref_primary_10_1002_hbm_26244
crossref_primary_10_1016_j_neuroscience_2023_10_021
crossref_primary_10_1111_cns_14805
crossref_primary_10_1089_brain_2020_0819
crossref_primary_10_1002_brb3_2243
crossref_primary_10_1093_cercor_bhaf043
crossref_primary_10_1016_j_jmro_2022_100038
crossref_primary_10_3389_fninf_2019_00005
crossref_primary_10_1186_s13195_020_00764_6
crossref_primary_10_1016_j_neuroimage_2022_119128
crossref_primary_10_1016_j_nicl_2019_101960
crossref_primary_10_1016_j_psychres_2025_116377
crossref_primary_10_1016_j_nicl_2022_103238
crossref_primary_10_1016_j_jneumeth_2019_108451
crossref_primary_10_1038_s41598_024_80901_5
crossref_primary_10_1097_j_pain_0000000000001237
crossref_primary_10_1007_s10548_021_00848_y
crossref_primary_10_1007_s00062_021_01105_2
crossref_primary_10_1002_aur_2476
crossref_primary_10_1002_hbm_26472
crossref_primary_10_1523_ENEURO_0223_23_2024
crossref_primary_10_1002_hbm_24331
crossref_primary_10_1016_j_heliyon_2020_e04516
crossref_primary_10_1016_j_pnpbp_2019_109819
crossref_primary_10_1038_s41386_020_0702_3
crossref_primary_10_1038_s41380_024_02769_1
crossref_primary_10_3389_fneur_2021_602716
crossref_primary_10_1162_netn_a_00275
crossref_primary_10_1007_s11682_021_00518_4
crossref_primary_10_3389_fnins_2019_01249
crossref_primary_10_1002_hbm_24728
crossref_primary_10_1007_s12264_021_00650_7
crossref_primary_10_1007_s00234_024_03436_6
crossref_primary_10_1007_s00787_020_01601_9
crossref_primary_10_1038_s41592_018_0235_4
crossref_primary_10_1007_s00429_021_02236_5
crossref_primary_10_1016_j_pnpbp_2024_110968
crossref_primary_10_1089_brain_2020_0779
crossref_primary_10_1007_s11682_018_9894_0
crossref_primary_10_1016_j_neuroimage_2018_10_004
crossref_primary_10_1038_s41598_020_79845_3
crossref_primary_10_3233_BPL_240003
crossref_primary_10_1371_journal_pone_0226715
crossref_primary_10_1016_j_neurobiolaging_2021_09_001
crossref_primary_10_1007_s00429_022_02529_3
crossref_primary_10_3389_fneur_2022_813597
crossref_primary_10_1002_hbm_25332
crossref_primary_10_1038_s41598_022_07578_6
crossref_primary_10_1016_j_nicl_2021_102645
crossref_primary_10_1016_j_brainres_2025_149586
crossref_primary_10_1089_brain_2018_0641
crossref_primary_10_1038_s41598_024_57510_3
crossref_primary_10_1016_j_neuroimage_2020_116996
crossref_primary_10_1016_j_neuroimage_2020_117328
crossref_primary_10_1016_j_nicl_2023_103542
crossref_primary_10_1111_desc_13161
crossref_primary_10_1111_head_14752
crossref_primary_10_1016_j_jneumeth_2019_108438
crossref_primary_10_1002_hbm_70059
crossref_primary_10_7554_eLife_39648
crossref_primary_10_1016_j_neuroimage_2023_120403
crossref_primary_10_1002_jmri_27099
crossref_primary_10_1136_gpsych_2022_100985
crossref_primary_10_1016_j_artmed_2020_101872
crossref_primary_10_1002_aur_2014
crossref_primary_10_1093_scan_nsab080
crossref_primary_10_1002_hbm_23823
crossref_primary_10_3389_fneur_2021_668856
crossref_primary_10_1109_TBME_2019_2958333
crossref_primary_10_1038_s41598_022_12587_6
crossref_primary_10_1093_cercor_bhz129
crossref_primary_10_1038_s41598_020_59282_y
crossref_primary_10_3389_fnins_2023_1092125
crossref_primary_10_1002_hbm_26092
crossref_primary_10_1111_cns_14038
crossref_primary_10_1016_j_ijpsycho_2024_112442
crossref_primary_10_1162_netn_a_00254
crossref_primary_10_3389_fnins_2023_1318094
crossref_primary_10_1038_s41598_024_67034_5
crossref_primary_10_1111_cns_13185
crossref_primary_10_1097_WNO_0000000000001155
crossref_primary_10_3389_fninf_2020_00007
crossref_primary_10_1016_j_compbiomed_2022_106240
crossref_primary_10_1016_j_neuroimage_2021_118541
crossref_primary_10_3389_fnins_2018_00064
crossref_primary_10_3389_fonc_2022_840871
crossref_primary_10_3389_fneur_2021_716500
crossref_primary_10_1002_hbm_23896
crossref_primary_10_1523_JNEUROSCI_0250_18_2018
crossref_primary_10_3174_ajnr_A8033
crossref_primary_10_1038_s41598_025_94790_9
crossref_primary_10_1093_cercor_bhab286
crossref_primary_10_1089_brain_2021_0186
crossref_primary_10_3389_fmed_2025_1540297
crossref_primary_10_1016_j_brainres_2021_147732
crossref_primary_10_3233_JAD_215649
crossref_primary_10_1002_hbm_24541
crossref_primary_10_1002_hbm_26280
crossref_primary_10_1162_nol_a_00151
crossref_primary_10_1016_j_nicl_2022_102984
crossref_primary_10_1111_srt_13626
crossref_primary_10_1289_EHP9737
crossref_primary_10_3389_fphar_2024_1454628
crossref_primary_10_1002_ejp_4720
crossref_primary_10_1073_pnas_1915124117
crossref_primary_10_3389_fnagi_2019_00319
crossref_primary_10_1007_s11682_019_00228_y
crossref_primary_10_1016_j_neuroimage_2021_118631
crossref_primary_10_1016_j_urology_2020_06_001
crossref_primary_10_1038_s41467_022_31053_5
crossref_primary_10_1007_s11307_022_01745_x
crossref_primary_10_1007_s10802_019_00560_3
crossref_primary_10_1016_j_neuroimage_2022_119434
crossref_primary_10_1016_j_ejpsy_2025_100292
crossref_primary_10_1016_j_nicl_2025_103731
crossref_primary_10_1002_hbm_26030
crossref_primary_10_3390_brainsci14080840
crossref_primary_10_1016_j_pnpbp_2020_109986
crossref_primary_10_1016_j_neuroimage_2021_117951
crossref_primary_10_1016_j_neuroimage_2021_118006
crossref_primary_10_1089_brain_2021_0073
crossref_primary_10_1016_j_drugalcdep_2021_108509
crossref_primary_10_1016_j_ynirp_2022_100094
crossref_primary_10_1007_s11682_021_00468_x
crossref_primary_10_3389_fpsyt_2024_1293514
crossref_primary_10_1093_cercor_bhab057
crossref_primary_10_1038_s41598_023_49415_4
crossref_primary_10_1007_s11682_025_00996_w
crossref_primary_10_1016_j_drugalcdep_2019_02_024
crossref_primary_10_1111_cns_14109
crossref_primary_10_1016_j_neulet_2024_137998
crossref_primary_10_1007_s11682_018_9941_x
crossref_primary_10_1038_s41398_021_01706_y
crossref_primary_10_1016_j_brainres_2021_147479
crossref_primary_10_1111_nyas_14943
crossref_primary_10_1016_j_bpsc_2021_11_016
crossref_primary_10_1016_j_neuroimage_2019_01_080
crossref_primary_10_1007_s10508_020_01818_4
crossref_primary_10_1016_j_pscychresns_2025_111957
crossref_primary_10_1016_j_bpsc_2020_11_012
crossref_primary_10_1016_j_ynirp_2023_100188
crossref_primary_10_3389_fneur_2019_00655
crossref_primary_10_3390_clockssleep7010015
crossref_primary_10_1016_j_bpsc_2024_11_010
crossref_primary_10_3389_fneur_2018_01177
crossref_primary_10_1007_s11682_022_00685_y
crossref_primary_10_1002_jmri_27691
crossref_primary_10_3389_fneur_2020_00684
crossref_primary_10_3389_fnhum_2024_1392199
crossref_primary_10_1016_j_neuroimage_2022_119296
crossref_primary_10_1007_s00406_024_01949_y
crossref_primary_10_1016_j_neuroimage_2019_116223
crossref_primary_10_3389_fnhum_2023_1276994
crossref_primary_10_1016_j_ijchp_2022_100319
crossref_primary_10_1007_s13311_021_01030_9
crossref_primary_10_3389_fnagi_2022_850977
crossref_primary_10_3390_tomography9020072
crossref_primary_10_3390_s24237742
crossref_primary_10_3389_fnins_2019_00536
crossref_primary_10_1089_neur_2024_0122
crossref_primary_10_1089_brain_2023_0087
crossref_primary_10_1002_hbm_24827
crossref_primary_10_3390_brainsci14080742
crossref_primary_10_1038_s42003_021_02815_6
crossref_primary_10_1007_s11682_019_00217_1
crossref_primary_10_1016_j_nicl_2019_102080
crossref_primary_10_1016_j_nicl_2019_102083
crossref_primary_10_1162_jocn_a_01915
crossref_primary_10_3389_fonc_2022_882313
Cites_doi 10.1016/j.neuroimage.2004.07.010
10.1016/j.neuroimage.2015.10.079
10.1006/nimg.2001.0978
10.1002/mrm.26251
10.1016/j.neuroimage.2010.09.025
10.1016/j.neuroimage.2009.06.060
10.1016/j.neuroimage.2009.05.047
10.1109/42.906424
10.1016/j.neuroimage.2005.02.018
10.1016/j.jneumeth.2010.03.021
10.1016/j.neuroimage.2007.04.065
10.1002/mrm.25444
10.1016/S1361-8415(01)00036-6
10.1016/j.neuroimage.2012.02.018
10.1006/nimg.1998.0396
10.1006/nimg.1998.0395
10.1097/00004728-199801000-00028
10.1006/nimg.1999.0439
10.1016/j.neuroimage.2009.11.044
10.1098/rstb.2001.0915
10.1016/j.neuroimage.2017.02.085
10.1002/mrm.1910340111
10.1016/S1053-8119(03)00073-9
10.1073/pnas.200033797
10.1371/journal.pone.0116320
10.7554/eLife.15166
10.1016/S1053-8119(03)00336-7
10.1016/j.neuroimage.2004.07.022
10.1002/hbm.460020402
10.1016/j.neuroimage.2008.12.037
10.1006/nimg.1995.1012
10.1002/mrm.23317
10.1016/j.jneumeth.2004.07.014
10.1016/j.media.2007.06.004
10.1016/j.neuroimage.2014.06.045
10.1006/nimg.1999.0458
10.1016/j.neuroimage.2010.05.075
10.1097/00004728-199403000-00005
10.1002/hbm.460030303
10.1002/hbm.460030302
ContentType Journal Article
Copyright 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
2017 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
– notice: 2017 Wiley Periodicals, Inc.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.23737
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Technology Research Database


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Impact of T1 vs EPI Spatial Normalization Templates
EISSN 1097-0193
EndPage 5342
ExternalDocumentID PMC5565844
28745021
10_1002_hbm_23737
HBM23737
Genre shortCommunication
Journal Article
Comparative Study
GrantInformation_xml – fundername: National Science Foundation
  funderid: 1539067
– fundername: National Institute of Health
  funderid: P20GM103472; R01EB005846; 1R01EB006841; R01HD082257; 5R01MH109329; 1R01DA026964; R01MH078160; R01MH085328; R01MH106564; K23MH101322; K23MH107734; K01MH109766
– fundername: NIMH NIH HHS
  grantid: K01 MH109766
– fundername: NIBIB NIH HHS
  grantid: R01 EB005846
– fundername: NIBIB NIH HHS
  grantid: R01 EB020407
– fundername: NIBIB NIH HHS
  grantid: R01 EB006841
– fundername: NIGMS NIH HHS
  grantid: P20 GM103472
– fundername: NIMH NIH HHS
  grantid: K23 MH107734
– fundername: NIBIB NIH HHS
  grantid: R01 EB000840
– fundername: ;
  grantid: 1539067
– fundername: ;
  grantid: P20GM103472; R01EB005846; 1R01EB006841; R01HD082257; 5R01MH109329; 1R01DA026964; R01MH078160; R01MH085328; R01MH106564; K23MH101322; K23MH107734; K01MH109766
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c4437-c24cb75a7f59cccae282f1ee0e7868bfe46e9f4cf3085087ce1a584e06f342463
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 18:45:54 EDT 2025
Tue Aug 05 08:54:01 EDT 2025
Wed Aug 13 09:32:36 EDT 2025
Thu Apr 03 06:49:02 EDT 2025
Tue Jul 01 01:10:48 EDT 2025
Thu Apr 24 22:52:01 EDT 2025
Wed Jan 22 16:54:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords fMRI
spatial normalization
echo planar image
coregistration
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4437-c24cb75a7f59cccae282f1ee0e7868bfe46e9f4cf3085087ce1a584e06f342463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0001-9058-0747
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.23737
PMID 28745021
PQID 1947412507
PQPubID 996345
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5565844
proquest_miscellaneous_1923745004
proquest_journals_1947412507
pubmed_primary_28745021
crossref_citationtrail_10_1002_hbm_23737
crossref_primary_10_1002_hbm_23737
wiley_primary_10_1002_hbm_23737_HBM23737
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2017
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: November 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Antonio
– name: Hoboken
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2017
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2009; 47
2010; 53
2009; 46
2002; 15
1995; 34
2015; 74
2004; 23
2010; 189
2015; 10
2016; 124
2008; 12
2011; 54
2005
2017; 152
2004; 1265
2003; 19
1995b; 2
2005; 26
1995; 2
1995; 3
2009; 48
1998; 22
2007; 37
2001; 20
1999; 9
2016; 5
2005; 142
1995a; 2
2001; 5
2017; 77
2000; 97
1999; 10
1994; 18
2014
2013
2014; 100
2012; 68
2003; 20
2001; 356
2010; 50
1988
2012; 62
Ardekani BA (e_1_2_6_4_1) 2004; 1265
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Martino AD (e_1_2_6_35_1) 2013
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
Talairach J (e_1_2_6_41_1) 1988
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
Huntenberg JM (e_1_2_6_29_1) 2014
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_26_1
e_1_2_6_47_1
References_xml – volume: 54
  start-page: 2033
  year: 2011
  end-page: 2044
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration
  publication-title: NeuroImage
– volume: 10
  year: 2015
  end-page: e0116320
  article-title: Distortion correction in EPI using an extended PSF method with a reversed phase gradient approach
  publication-title: PLoS One
– volume: 46
  start-page: 786
  year: 2009
  end-page: 802
  article-title: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration
  publication-title: NeuroImage
– volume: 10
  start-page: 107
  year: 1999
  end-page: 113
  article-title: Detecting structural changes in whole brain based on nonlinear deformations‐application to schizophrenia research
  publication-title: NeuroImage
– volume: 34
  start-page: 65
  year: 1995
  end-page: 73
  article-title: Correction for geometric distortion in echo planar images from B0 field variations
  publication-title: Magn Reson Med
– volume: 26
  start-page: 839
  year: 2005
  end-page: 851
  article-title: Unified segmentation
  publication-title: NeuroImage
– year: 2005
– volume: 12
  start-page: 26
  year: 2008
  end-page: 41
  article-title: Symmetric diffeomorphic image registration with cross‐correlation: Evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med Image Anal
– volume: 97
  start-page: 11050
  year: 2000
  end-page: 11055
  article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images
  publication-title: Proc Natl Acad Sci USA
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation‐maximization algorithm
  publication-title: IEEE Trans Med Imag
– volume: 2
  start-page: 165
  year: 1995a
  end-page: 189
  article-title: Spatial registration and normalization of images
  publication-title: Hum Brain Mapp
– volume: 62
  start-page: 2222
  year: 2012
  end-page: 2231
  article-title: The Human Connectome Project: A data acquisition perspective
  publication-title: NeuroImage
– volume: 9
  start-page: 179
  year: 1999
  end-page: 194
  article-title: Cortical surface‐based analysis. I. Segmentation and surface reconstruction
  publication-title: NeuroImage
– volume: 2
  start-page: 189
  year: 1995b
  end-page: 210
  article-title: Statistical parametric maps in functional imaging: A general linear approach
  publication-title: Hum Brain Mapp
– volume: 124
  start-page: 1065
  year: 2016
  end-page: 1068
  article-title: Sharing the wealth: Neuroimaging data repositories
  publication-title: NeuroImage
– volume: 23
  start-page: S196
  year: 2004
  end-page: S207
  article-title: Optimizing the fMRI data‐processing pipeline using prediction and reproducibility performance metrics: I. A preliminary group analysis
  publication-title: NeuroImage
– volume: 100
  start-page: 710
  year: 2014
  end-page: 714
  article-title: A study‐specific fMRI normalization approach that operates directly on high resolution functional EPI data at 7 Tesla
  publication-title: NeuroImage
– volume: 18
  start-page: 192
  year: 1994
  end-page: 205
  article-title: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space
  publication-title: J Comput Assist Tomogr
– volume: 1265
  start-page: 49
  year: 2004
  end-page: 59
  article-title: Impact of inter‐subject image registration on group analysis of fMRI data in international congress series
  publication-title: Elsevier
– year: 2014
– volume: 68
  start-page: 1239
  year: 2012
  end-page: 1246
  article-title: Distortion correction in EPI at ultra‐high‐field MRI using PSF mapping with optimal combination of shift detection dimension
  publication-title: Magn Reson Med
– volume: 50
  start-page: 175
  year: 2010
  end-page: 183
  article-title: Efficient correction of inhomogeneous static magnetic field‐induced distortion in Echo Planar Imaging
  publication-title: NeuroImage
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single‐subject brain
  publication-title: NeuroImage
– volume: 77
  start-page: 1749
  year: 2017
  end-page: 1761
  article-title: EPI Nyquist ghost and geometric distortion correction by two‐frame phase labeling
  publication-title: Magn Reson Med
– volume: 53
  start-page: 85
  year: 2010
  end-page: 93
  article-title: Evaluating the validity of volume‐based and surface‐based brain image registration for developmental cognitive neuroscience studies in children 4 to 11 years of age
  publication-title: NeuroImage
– volume: 356
  start-page: 1293
  year: 2001
  end-page: 1322
  article-title: A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM)
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 152
  start-page: 450
  year: 2017
  end-page: 466
  article-title: Towards a comprehensive framework for movement and distortion correction of diffusion MR images: Within volume movement
  publication-title: NeuroImage
– volume: 2
  start-page: 89
  year: 1995
  end-page: 101
  article-title: A probabilistic atlas of the human brain: Theory and rationale for its development. The International Consortium for Brain Mapping (ICBM)
  publication-title: NeuroImage
– volume: 3
  start-page: 161
  year: 1995
  end-page: 164
  article-title: Spatial normalization origins: Objectives, applications, and alternatives
  publication-title: Hum Brain Mapp
– volume: 10
  start-page: 1
  year: 1999
  end-page: 5
  article-title: How many subjects constitute a study?
  publication-title: NeuroImage
– year: 1988
– volume: 20
  start-page: 870
  year: 2003
  end-page: 888
  article-title: How to correct susceptibility distortions in spin‐echo echo‐planar images: Application to diffusion tensor imaging
  publication-title: NeuroImage
– volume: 23
  start-page: S139
  year: 2004
  end-page: S150
  article-title: Geodesic estimation for large deformation anatomical shape averaging and interpolation
  publication-title: NeuroImage
– volume: 19
  start-page: 430
  year: 2003
  end-page: 441
  article-title: Optimized EPI for fMRI studies of the orbitofrontal cortex
  publication-title: NeuroImage
– volume: 48
  start-page: 63
  year: 2009
  end-page: 72
  article-title: Accurate and robust brain image alignment using boundary‐based registration
  publication-title: NeuroImage
– volume: 22
  start-page: 153
  year: 1998
  end-page: 165
  article-title: Automated image registration: II. Intersubject validation of linear and nonlinear models
  publication-title: J Comput Assist Tomogr
– volume: 47
  start-page: 1522
  year: 2009
  end-page: 1531
  article-title: Reducing inter‐subject anatomical variation: Effect of normalization method on sensitivity of functional magnetic resonance imaging data analysis in auditory cortex and the superior temporal region
  publication-title: NeuroImage
– volume: 37
  start-page: 866
  year: 2007
  end-page: 875
  article-title: Spatial normalization of lesioned brains: Performance evaluation and impact on fMRI analyses
  publication-title: NeuroImage
– volume: 142
  start-page: 67
  year: 2005
  end-page: 76
  article-title: Quantitative comparison of algorithms for inter‐subject registration of 3D volumetric brain MRI scans
  publication-title: J Neurosci Methods
– year: 2013
  article-title: The autism brain imaging data exchange: Towards a large‐scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol Psychiatry
– volume: 9
  start-page: 195
  year: 1999
  end-page: 207
  article-title: Cortical surface‐based analysis. II: Inflation, flattening, and a surface‐based coordinate system
  publication-title: NeuroImage
– volume: 5
  start-page: 143
  year: 2001
  end-page: 156
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med Image Anal
– volume: 74
  start-page: 661
  year: 2015
  end-page: 672
  article-title: Designing hyperbolic secant excitation pulses to reduce signal dropout in gradient‐echo echo‐planar imaging
  publication-title: Magn Reson Med
– volume: 189
  start-page: 257
  year: 2010
  end-page: 266
  article-title: Study‐specific EPI template improves group analysis in functional MRI of young and older adults
  publication-title: J Neurosci Methods
– volume: 5
  start-page: e15166
  year: 2016
  article-title: Somatic and vicarious pain are represented by dissociable multivariate brain patterns
  publication-title: Elife
– year: 2013
– ident: e_1_2_6_7_1
  doi: 10.1016/j.neuroimage.2004.07.010
– ident: e_1_2_6_15_1
  doi: 10.1016/j.neuroimage.2015.10.079
– ident: e_1_2_6_42_1
  doi: 10.1006/nimg.2001.0978
– ident: e_1_2_6_46_1
  doi: 10.1002/mrm.26251
– ident: e_1_2_6_9_1
  doi: 10.1016/j.neuroimage.2010.09.025
– ident: e_1_2_6_26_1
  doi: 10.1016/j.neuroimage.2009.06.060
– ident: e_1_2_6_40_1
  doi: 10.1016/j.neuroimage.2009.05.047
– ident: e_1_2_6_47_1
  doi: 10.1109/42.906424
– ident: e_1_2_6_6_1
  doi: 10.1016/j.neuroimage.2005.02.018
– year: 2013
  ident: e_1_2_6_35_1
  article-title: The autism brain imaging data exchange: Towards a large‐scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol Psychiatry
– ident: e_1_2_6_28_1
  doi: 10.1016/j.jneumeth.2010.03.021
– ident: e_1_2_6_12_1
  doi: 10.1016/j.neuroimage.2007.04.065
– ident: e_1_2_6_44_1
  doi: 10.1002/mrm.25444
– ident: e_1_2_6_31_1
  doi: 10.1016/S1361-8415(01)00036-6
– ident: e_1_2_6_11_1
– ident: e_1_2_6_43_1
  doi: 10.1016/j.neuroimage.2012.02.018
– ident: e_1_2_6_17_1
  doi: 10.1006/nimg.1998.0396
– ident: e_1_2_6_13_1
  doi: 10.1006/nimg.1998.0395
– ident: e_1_2_6_45_1
  doi: 10.1097/00004728-199801000-00028
– ident: e_1_2_6_22_1
  doi: 10.1006/nimg.1999.0439
– ident: e_1_2_6_27_1
  doi: 10.1016/j.neuroimage.2009.11.044
– ident: e_1_2_6_36_1
  doi: 10.1098/rstb.2001.0915
– ident: e_1_2_6_3_1
  doi: 10.1016/j.neuroimage.2017.02.085
– ident: e_1_2_6_32_1
  doi: 10.1002/mrm.1910340111
– ident: e_1_2_6_14_1
  doi: 10.1016/S1053-8119(03)00073-9
– volume-title: Evaluating Nonlinear Coregistration of BOLD EPI and T1 Images
  year: 2014
  ident: e_1_2_6_29_1
– ident: e_1_2_6_16_1
  doi: 10.1073/pnas.200033797
– ident: e_1_2_6_19_1
– ident: e_1_2_6_30_1
  doi: 10.1371/journal.pone.0116320
– ident: e_1_2_6_34_1
  doi: 10.7554/eLife.15166
– ident: e_1_2_6_2_1
  doi: 10.1016/S1053-8119(03)00336-7
– ident: e_1_2_6_39_1
  doi: 10.1016/j.neuroimage.2004.07.022
– ident: e_1_2_6_21_1
  doi: 10.1002/hbm.460020402
– ident: e_1_2_6_33_1
  doi: 10.1016/j.neuroimage.2008.12.037
– ident: e_1_2_6_37_1
  doi: 10.1006/nimg.1995.1012
– ident: e_1_2_6_38_1
  doi: 10.1002/mrm.23317
– ident: e_1_2_6_5_1
  doi: 10.1016/j.jneumeth.2004.07.014
– ident: e_1_2_6_8_1
  doi: 10.1016/j.media.2007.06.004
– ident: e_1_2_6_25_1
  doi: 10.1016/j.neuroimage.2014.06.045
– ident: e_1_2_6_23_1
  doi: 10.1006/nimg.1999.0458
– ident: e_1_2_6_24_1
  doi: 10.1016/j.neuroimage.2010.05.075
– volume: 1265
  start-page: 49
  year: 2004
  ident: e_1_2_6_4_1
  article-title: Impact of inter‐subject image registration on group analysis of fMRI data in international congress series
  publication-title: Elsevier
– ident: e_1_2_6_10_1
  doi: 10.1097/00004728-199403000-00005
– ident: e_1_2_6_20_1
  doi: 10.1002/hbm.460030303
– ident: e_1_2_6_18_1
  doi: 10.1002/hbm.460030302
– volume-title: A Co‐Planar Sterotaxic Atlas of a Human Brain
  year: 1988
  ident: e_1_2_6_41_1
SSID ssj0011501
Score 2.6103747
Snippet Spatial normalization of brains to a standardized space is a widely used approach for group studies in functional magnetic resonance imaging (fMRI) data....
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5331
SubjectTerms Adolescent
Adult
Affine transformations
Autistic Disorder - diagnostic imaging
Autistic Disorder - physiopathology
Brain
Brain - diagnostic imaging
Brain - physiology
Brain - physiopathology
Brain mapping
Brain Mapping - methods
Child
Child, Preschool
coregistration
Data processing
Distortion
echo planar image
fMRI
Functional magnetic resonance imaging
Genetic transformation
Humans
Inhibition, Psychological
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Middle Aged
Motor Activity - physiology
Neuroimaging
Nonlinear Dynamics
Pain - diagnostic imaging
Pain - physiopathology
Rest
Software packages
Spatial analysis
spatial normalization
Young Adult
Title The impact of T1 versus EPI spatial normalization templates for fMRI data analyses
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.23737
https://www.ncbi.nlm.nih.gov/pubmed/28745021
https://www.proquest.com/docview/1947412507
https://www.proquest.com/docview/1923745004
https://pubmed.ncbi.nlm.nih.gov/PMC5565844
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VHhAXHi2PhVIZhFAv2ebhx0acCmq1RVpUrVqpB6QodsYqYptFZPcAv54Z5wFLQULcInnsJPaM_dme-QbgleJF1lYySpSXkawQo0lWmUjnCgkfG69DzsjZBz29kO8v1eUWvOljYVp-iOHAjS0jzNds4KVtDn-Shl7Z63GamYwjydlXiwHRfKCOYqATNlu0xEY5zcA9q1CcHg41N9eiGwDzpp_kr_g1LEAn9-Bj_-mt38nn8Xplx-77b6yO__lv9-FuB0zFUatJD2AL6x3YPappU379TbwWwVU0nMHvwO1ZdyO_C3PSM9GGWoqlF-eJYD-PdSOOz05Fw-7a1GjNwHjRRXwKZsNaMMQVBJiFn81PBfupijLwo2DzEC5Ojs_fTaMuT0PkpMxM5FLprFGl8Sp3pBFI2zifIMZoJnpiPUqNuZfOZ8yPNzEOk5JwD8baZzKVOnsE2_WyxicgYm1p5LBkHCFT1HmVUHXvJFqbmaoawUE_YoXrSMw5l8aiaOmX04K6rghdN4KXg-iXlrnjT0J7_bAXnfE2RUL6Ign4xVT8Yigms-O7lLLG5ZplqL5UNMWM4HGrJcNbQgoBwk4jMBv6MwgwpfdmSf3pKlB7K8WIkNo8COrx9w8vpm9n4eHpv4s-gzspg5IQSbkH26uva3xOkGpl9-FWKs_2gwX9AG5oHXg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIcFe-NhgdAwwCKG9pMuHYzcSLwM2tbBMqOqkvaAocc7atC5FtH0Yfz13zgeUgYR4i-Szk9h39s_23e8AXse8yBal9ILYSk-WiN4gKrWnkhgJH2urXM7I9EQNT-XHs_hsDd62sTA1P0R34MaW4eZrNnA-kN7_yRp6Xlz1w0hH-hbc5ozezJz_YdyRRzHUcdstWmS9hObgllfID_e7qqur0Q2IedNT8lcE65ago_vwpf342vPksr9cFH3z_Tdex__9uwdwr8Gm4qBWpoewhtUmbB1UtC-_uhZvhPMWdcfwm3AnbS7lt2BMqibqaEsxs2ISCHb1WM7F4eeRmLPHNjVaMTaeNkGfggmxpoxyBWFmYdPxSLCrqsgdRQrOH8Hp0eHk_dBrUjV4RspIeyaUptBxrm2cGFIKpJ2cDRB91AM1KCxKhYmVxkZMkTfQBoOcoA_6ykYylCp6DOvVrMInIHxV0NBhzlBChqiSMqDq1kgsikiXZQ_22iHLTMNjzuk0plnNwBxm1HWZ67oevOpEv9bkHX8S2m3HPWvsd54FpDCSsJ9PxS-7YrI8vk7JK5wtWYbqy5hmmR5s12rSvcVlESD41AO9okCdALN6r5ZUF-eO3TuOGRRSm3tOP_7-4dnwXeoedv5d9AXcHU7S4-x4dPLpKWyEjFFcYOUurC--LfEZIaxF8dwZ0g9ytCC9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dSxtBEB9sBOlLsWprqtVVivhy9T72I0efrBoSbSSIgm_HfcyiEC9ikgf_-87sXa4GK_h2sLN3x8zuzm93Zn4L8EOxk80K6QXKSk8WiF4nKoynY4WEj43V7s7IwaXu3cjzW3W7BL_mtTAVP0Rz4MYzw63XPMEfC3v0jzT0Lnv4GUYmMh9gmYN9nM8VymETQiCk43Zb5GO9mJbgOa2QHx41XRed0SuE-TpR8iWAdR6ouwqfaugojitbf4YlLNdg_bikbfPDszgQLpnTnZKvwcqgjpmvwxWNBFEVQ4qxFdeB4EyM2UScDftiwgnV9NKSoeuorskUzFc1YhAqCNIKO7jqC84kFaljMMHJBtx0z65Pel59k4KXSxkZLw9lnhmVGqvinGyGtNGyAaKPpqM7mUWpMbYytxEz2HVMjkFKKkVf20iGUkdfoFWOS9wE4euMVIspe3oZoo6LgLrbXGKWRaYo2nA4V2mS1zTjfNvFKKkIksOEtJ847bdhvxF9rLg1_ie0PbdLUk-vSRKQQSVBM5-a95pmmhgc7UhLHM9YhvpLRYtAG75WZmy-4kj-Cd20wSwYuBFg0u3FlvL-zpFvK8WYjd556IbC2z-e9H4P3MO394vuwsrwtJv86V9ebMHHkBGEK3vchtb0aYbfCf9Msx03zv8CAlT_Lw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+impact+of+T1+versus+EPI+spatial+normalization+templates+for+fMRI+data+analyses&rft.jtitle=Human+brain+mapping&rft.au=Calhoun%2C+Vince+D&rft.au=Wager%2C+Tor+D&rft.au=Krishnan%2C+Anjali&rft.au=Rosch%2C+Keri+S&rft.date=2017-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=38&rft.issue=11&rft.spage=5331&rft.epage=5342&rft_id=info:doi/10.1002%2Fhbm.23737&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon