The impact of T1 versus EPI spatial normalization templates for fMRI data analyses
Spatial normalization of brains to a standardized space is a widely used approach for group studies in functional magnetic resonance imaging (fMRI) data. Commonly used template‐based approaches are complicated by signal dropout and distortions in echo planar imaging (EPI) data. The most widely used...
Saved in:
Published in | Human brain mapping Vol. 38; no. 11; pp. 5331 - 5342 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.11.2017
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spatial normalization of brains to a standardized space is a widely used approach for group studies in functional magnetic resonance imaging (fMRI) data. Commonly used template‐based approaches are complicated by signal dropout and distortions in echo planar imaging (EPI) data. The most widely used software packages implement two common template‐based strategies: (1) affine transformation of the EPI data to an EPI template followed by nonlinear registration to an EPI template (EPInorm) and (2) affine transformation of the EPI data to the anatomic image for a given subject, followed by nonlinear registration of the anatomic data to an anatomic template, which produces a transformation that is applied to the EPI data (T1norm). EPI distortion correction can be used to adjust for geometric distortion of EPI relative to the T1 images. However, in practice, this EPI distortion correction step is often skipped. We compare these template‐based strategies empirically in four large datasets. We find that the EPInorm approach consistently shows reduced variability across subjects, especially in the case when distortion correction is not applied. EPInorm also shows lower estimates for coregistration distances among subjects (i.e., within‐dataset similarity is higher). Finally, the EPInorm approach shows higher T values in a task‐based dataset. Thus, the EPInorm approach appears to amplify the power of the sample compared to the T1norm approach when not using distortion correction (i.e., the EPInorm boosts the effective sample size by 12–25%). In sum, these results argue for the use of EPInorm over the T1norm when no distortion correction is used. Hum Brain Mapp 38:5331–5342, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. |
---|---|
AbstractList | Spatial normalization of brains to a standardized space is a widely used approach for group studies in functional magnetic resonance imaging (fMRI) data. Commonly used template‐based approaches are complicated by signal dropout and distortions in echo planar imaging (EPI) data. The most widely used software packages implement two common template‐based strategies: (1) affine transformation of the EPI data to an EPI template followed by nonlinear registration to an EPI template (EPInorm) and (2) affine transformation of the EPI data to the anatomic image for a given subject, followed by nonlinear registration of the anatomic data to an anatomic template, which produces a transformation that is applied to the EPI data (T1norm). EPI distortion correction can be used to adjust for geometric distortion of EPI relative to the T1 images. However, in practice, this EPI distortion correction step is often skipped. We compare these template‐based strategies empirically in four large datasets. We find that the EPInorm approach consistently shows reduced variability across subjects, especially in the case when distortion correction is not applied. EPInorm also shows lower estimates for coregistration distances among subjects (i.e., within‐dataset similarity is higher). Finally, the EPInorm approach shows higher
T
values in a task‐based dataset. Thus, the EPInorm approach appears to amplify the power of the sample compared to the T1norm approach when not using distortion correction (i.e., the EPInorm boosts the effective sample size by 12–25%). In sum, these results argue for the use of EPInorm over the T1norm when no distortion correction is used.
Hum Brain Mapp 38:5331–5342, 2017
. ©
2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. Spatial normalization of brains to a standardized space is a widely used approach for group studies in functional magnetic resonance imaging (fMRI) data. Commonly used template-based approaches are complicated by signal dropout and distortions in echo planar imaging (EPI) data. The most widely used software packages implement two common template-based strategies: (1) affine transformation of the EPI data to an EPI template followed by nonlinear registration to an EPI template (EPInorm) and (2) affine transformation of the EPI data to the anatomic image for a given subject, followed by nonlinear registration of the anatomic data to an anatomic template, which produces a transformation that is applied to the EPI data (T1norm). EPI distortion correction can be used to adjust for geometric distortion of EPI relative to the T1 images. However, in practice, this EPI distortion correction step is often skipped. We compare these template-based strategies empirically in four large datasets. We find that the EPInorm approach consistently shows reduced variability across subjects, especially in the case when distortion correction is not applied. EPInorm also shows lower estimates for coregistration distances among subjects (i.e., within-dataset similarity is higher). Finally, the EPInorm approach shows higher T values in a task-based dataset. Thus, the EPInorm approach appears to amplify the power of the sample compared to the T1norm approach when not using distortion correction (i.e., the EPInorm boosts the effective sample size by 12-25%). In sum, these results argue for the use of EPInorm over the T1norm when no distortion correction is used. Hum Brain Mapp 38:5331-5342, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. Spatial normalization of brains to a standardized space is a widely used approach for group studies in functional magnetic resonance imaging (fMRI) data. Commonly used template-based approaches are complicated by signal dropout and distortions in echo planar imaging (EPI) data. The most widely used software packages implement two common template-based strategies: (1) affine transformation of the EPI data to an EPI template followed by nonlinear registration to an EPI template (EPInorm) and (2) affine transformation of the EPI data to the anatomic image for a given subject, followed by nonlinear registration of the anatomic data to an anatomic template, which produces a transformation that is applied to the EPI data (T1norm). EPI distortion correction can be used to adjust for geometric distortion of EPI relative to the T1 images. However, in practice, this EPI distortion correction step is often skipped. We compare these template-based strategies empirically in four large datasets. We find that the EPInorm approach consistently shows reduced variability across subjects, especially in the case when distortion correction is not applied. EPInorm also shows lower estimates for coregistration distances among subjects (i.e., within-dataset similarity is higher). Finally, the EPInorm approach shows higher T values in a task-based dataset. Thus, the EPInorm approach appears to amplify the power of the sample compared to the T1norm approach when not using distortion correction (i.e., the EPInorm boosts the effective sample size by 12-25%). In sum, these results argue for the use of EPInorm over the T1norm when no distortion correction is used. Hum Brain Mapp 38:5331-5342, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.Spatial normalization of brains to a standardized space is a widely used approach for group studies in functional magnetic resonance imaging (fMRI) data. Commonly used template-based approaches are complicated by signal dropout and distortions in echo planar imaging (EPI) data. The most widely used software packages implement two common template-based strategies: (1) affine transformation of the EPI data to an EPI template followed by nonlinear registration to an EPI template (EPInorm) and (2) affine transformation of the EPI data to the anatomic image for a given subject, followed by nonlinear registration of the anatomic data to an anatomic template, which produces a transformation that is applied to the EPI data (T1norm). EPI distortion correction can be used to adjust for geometric distortion of EPI relative to the T1 images. However, in practice, this EPI distortion correction step is often skipped. We compare these template-based strategies empirically in four large datasets. We find that the EPInorm approach consistently shows reduced variability across subjects, especially in the case when distortion correction is not applied. EPInorm also shows lower estimates for coregistration distances among subjects (i.e., within-dataset similarity is higher). Finally, the EPInorm approach shows higher T values in a task-based dataset. Thus, the EPInorm approach appears to amplify the power of the sample compared to the T1norm approach when not using distortion correction (i.e., the EPInorm boosts the effective sample size by 12-25%). In sum, these results argue for the use of EPInorm over the T1norm when no distortion correction is used. Hum Brain Mapp 38:5331-5342, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. |
Author | Wager, Tor D. Rosch, Keri S. Nebel, Mary Beth Seymour, Karen E. Mostofsky, Stewart H. Kiehl, Kent Nyalakanai, Prashanth Calhoun, Vince D. Krishnan, Anjali |
AuthorAffiliation | 4 University of Colorado at Boulder Boulder Colorado 2 Department of ECE University of New Mexico Albuquerque New Mexico 3 Department of Psychology University of New Mexico Albuquerque New Mexico 1 The Mind Research Network & LBERI Albuquerque New Mexico 5 Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute Baltimore Maryland 7 Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland 6 Department of Psychiatry and Behavioral Sciences Johns Hopkins University School of Medicine Baltimore Maryland |
AuthorAffiliation_xml | – name: 6 Department of Psychiatry and Behavioral Sciences Johns Hopkins University School of Medicine Baltimore Maryland – name: 4 University of Colorado at Boulder Boulder Colorado – name: 5 Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute Baltimore Maryland – name: 2 Department of ECE University of New Mexico Albuquerque New Mexico – name: 1 The Mind Research Network & LBERI Albuquerque New Mexico – name: 7 Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland – name: 3 Department of Psychology University of New Mexico Albuquerque New Mexico |
Author_xml | – sequence: 1 givenname: Vince D. orcidid: 0000-0001-9058-0747 surname: Calhoun fullname: Calhoun, Vince D. email: vcalhoun@unm.edu organization: University of New Mexico – sequence: 2 givenname: Tor D. surname: Wager fullname: Wager, Tor D. organization: University of Colorado at Boulder – sequence: 3 givenname: Anjali surname: Krishnan fullname: Krishnan, Anjali organization: University of Colorado at Boulder – sequence: 4 givenname: Keri S. surname: Rosch fullname: Rosch, Keri S. organization: Johns Hopkins University School of Medicine – sequence: 5 givenname: Karen E. surname: Seymour fullname: Seymour, Karen E. organization: Johns Hopkins University School of Medicine – sequence: 6 givenname: Mary Beth surname: Nebel fullname: Nebel, Mary Beth organization: Johns Hopkins University School of Medicine – sequence: 7 givenname: Stewart H. surname: Mostofsky fullname: Mostofsky, Stewart H. organization: Johns Hopkins University School of Medicine – sequence: 8 givenname: Prashanth surname: Nyalakanai fullname: Nyalakanai, Prashanth organization: The Mind Research Network & LBERI – sequence: 9 givenname: Kent surname: Kiehl fullname: Kiehl, Kent organization: University of New Mexico |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28745021$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kV1PHCEYhYnR-NVe-Acakt7Yi1FgYJi5MWmNH5to2pjtNWHxpYthhhFmNNtfL-uuRk17BYTnPTnvOXtoswsdIHRAyRElhB3PZ-0RK2UpN9AuJY0sCG3KzeW9EkXDJd1BeyndEUKpIHQb7bBackEY3UU30zlg1_baDDhYPKX4AWIaEz77NcGp14PTHnchttq7v_kVOjxA23s9QMI2RGyvbyb4Vg8a6077RYL0CW1Z7RN8Xp_76Pf52fT0srj6eTE5_X5VGM5LWRjGzUwKLa1ojDEaWM0sBSAg66qeWeAVNJYbW5JakFoaoFrUHEhlS854Ve6jk5VuP85auDXQDVF71UfX6rhQQTv1_qdzc_UnPCghqizEs8DhWiCG-xHSoFqXDHivOwhjUrTJoeacyBL9-gG9C2PMCy8pLjllgshMfXnr6NXKS9wZOF4BJoaUIlhl3PCcajbovKJELQtVuVD1XGie-PZh4kX0X-xa_dF5WPwfVJc_rlcTTyByrt0 |
CitedBy_id | crossref_primary_10_1002_hbm_26244 crossref_primary_10_1016_j_neuroscience_2023_10_021 crossref_primary_10_1111_cns_14805 crossref_primary_10_1089_brain_2020_0819 crossref_primary_10_1002_brb3_2243 crossref_primary_10_1093_cercor_bhaf043 crossref_primary_10_1016_j_jmro_2022_100038 crossref_primary_10_3389_fninf_2019_00005 crossref_primary_10_1186_s13195_020_00764_6 crossref_primary_10_1016_j_neuroimage_2022_119128 crossref_primary_10_1016_j_nicl_2019_101960 crossref_primary_10_1016_j_psychres_2025_116377 crossref_primary_10_1016_j_nicl_2022_103238 crossref_primary_10_1016_j_jneumeth_2019_108451 crossref_primary_10_1038_s41598_024_80901_5 crossref_primary_10_1097_j_pain_0000000000001237 crossref_primary_10_1007_s10548_021_00848_y crossref_primary_10_1007_s00062_021_01105_2 crossref_primary_10_1002_aur_2476 crossref_primary_10_1002_hbm_26472 crossref_primary_10_1523_ENEURO_0223_23_2024 crossref_primary_10_1002_hbm_24331 crossref_primary_10_1016_j_heliyon_2020_e04516 crossref_primary_10_1016_j_pnpbp_2019_109819 crossref_primary_10_1038_s41386_020_0702_3 crossref_primary_10_1038_s41380_024_02769_1 crossref_primary_10_3389_fneur_2021_602716 crossref_primary_10_1162_netn_a_00275 crossref_primary_10_1007_s11682_021_00518_4 crossref_primary_10_3389_fnins_2019_01249 crossref_primary_10_1002_hbm_24728 crossref_primary_10_1007_s12264_021_00650_7 crossref_primary_10_1007_s00234_024_03436_6 crossref_primary_10_1007_s00787_020_01601_9 crossref_primary_10_1038_s41592_018_0235_4 crossref_primary_10_1007_s00429_021_02236_5 crossref_primary_10_1016_j_pnpbp_2024_110968 crossref_primary_10_1089_brain_2020_0779 crossref_primary_10_1007_s11682_018_9894_0 crossref_primary_10_1016_j_neuroimage_2018_10_004 crossref_primary_10_1038_s41598_020_79845_3 crossref_primary_10_3233_BPL_240003 crossref_primary_10_1371_journal_pone_0226715 crossref_primary_10_1016_j_neurobiolaging_2021_09_001 crossref_primary_10_1007_s00429_022_02529_3 crossref_primary_10_3389_fneur_2022_813597 crossref_primary_10_1002_hbm_25332 crossref_primary_10_1038_s41598_022_07578_6 crossref_primary_10_1016_j_nicl_2021_102645 crossref_primary_10_1016_j_brainres_2025_149586 crossref_primary_10_1089_brain_2018_0641 crossref_primary_10_1038_s41598_024_57510_3 crossref_primary_10_1016_j_neuroimage_2020_116996 crossref_primary_10_1016_j_neuroimage_2020_117328 crossref_primary_10_1016_j_nicl_2023_103542 crossref_primary_10_1111_desc_13161 crossref_primary_10_1111_head_14752 crossref_primary_10_1016_j_jneumeth_2019_108438 crossref_primary_10_1002_hbm_70059 crossref_primary_10_7554_eLife_39648 crossref_primary_10_1016_j_neuroimage_2023_120403 crossref_primary_10_1002_jmri_27099 crossref_primary_10_1136_gpsych_2022_100985 crossref_primary_10_1016_j_artmed_2020_101872 crossref_primary_10_1002_aur_2014 crossref_primary_10_1093_scan_nsab080 crossref_primary_10_1002_hbm_23823 crossref_primary_10_3389_fneur_2021_668856 crossref_primary_10_1109_TBME_2019_2958333 crossref_primary_10_1038_s41598_022_12587_6 crossref_primary_10_1093_cercor_bhz129 crossref_primary_10_1038_s41598_020_59282_y crossref_primary_10_3389_fnins_2023_1092125 crossref_primary_10_1002_hbm_26092 crossref_primary_10_1111_cns_14038 crossref_primary_10_1016_j_ijpsycho_2024_112442 crossref_primary_10_1162_netn_a_00254 crossref_primary_10_3389_fnins_2023_1318094 crossref_primary_10_1038_s41598_024_67034_5 crossref_primary_10_1111_cns_13185 crossref_primary_10_1097_WNO_0000000000001155 crossref_primary_10_3389_fninf_2020_00007 crossref_primary_10_1016_j_compbiomed_2022_106240 crossref_primary_10_1016_j_neuroimage_2021_118541 crossref_primary_10_3389_fnins_2018_00064 crossref_primary_10_3389_fonc_2022_840871 crossref_primary_10_3389_fneur_2021_716500 crossref_primary_10_1002_hbm_23896 crossref_primary_10_1523_JNEUROSCI_0250_18_2018 crossref_primary_10_3174_ajnr_A8033 crossref_primary_10_1038_s41598_025_94790_9 crossref_primary_10_1093_cercor_bhab286 crossref_primary_10_1089_brain_2021_0186 crossref_primary_10_3389_fmed_2025_1540297 crossref_primary_10_1016_j_brainres_2021_147732 crossref_primary_10_3233_JAD_215649 crossref_primary_10_1002_hbm_24541 crossref_primary_10_1002_hbm_26280 crossref_primary_10_1162_nol_a_00151 crossref_primary_10_1016_j_nicl_2022_102984 crossref_primary_10_1111_srt_13626 crossref_primary_10_1289_EHP9737 crossref_primary_10_3389_fphar_2024_1454628 crossref_primary_10_1002_ejp_4720 crossref_primary_10_1073_pnas_1915124117 crossref_primary_10_3389_fnagi_2019_00319 crossref_primary_10_1007_s11682_019_00228_y crossref_primary_10_1016_j_neuroimage_2021_118631 crossref_primary_10_1016_j_urology_2020_06_001 crossref_primary_10_1038_s41467_022_31053_5 crossref_primary_10_1007_s11307_022_01745_x crossref_primary_10_1007_s10802_019_00560_3 crossref_primary_10_1016_j_neuroimage_2022_119434 crossref_primary_10_1016_j_ejpsy_2025_100292 crossref_primary_10_1016_j_nicl_2025_103731 crossref_primary_10_1002_hbm_26030 crossref_primary_10_3390_brainsci14080840 crossref_primary_10_1016_j_pnpbp_2020_109986 crossref_primary_10_1016_j_neuroimage_2021_117951 crossref_primary_10_1016_j_neuroimage_2021_118006 crossref_primary_10_1089_brain_2021_0073 crossref_primary_10_1016_j_drugalcdep_2021_108509 crossref_primary_10_1016_j_ynirp_2022_100094 crossref_primary_10_1007_s11682_021_00468_x crossref_primary_10_3389_fpsyt_2024_1293514 crossref_primary_10_1093_cercor_bhab057 crossref_primary_10_1038_s41598_023_49415_4 crossref_primary_10_1007_s11682_025_00996_w crossref_primary_10_1016_j_drugalcdep_2019_02_024 crossref_primary_10_1111_cns_14109 crossref_primary_10_1016_j_neulet_2024_137998 crossref_primary_10_1007_s11682_018_9941_x crossref_primary_10_1038_s41398_021_01706_y crossref_primary_10_1016_j_brainres_2021_147479 crossref_primary_10_1111_nyas_14943 crossref_primary_10_1016_j_bpsc_2021_11_016 crossref_primary_10_1016_j_neuroimage_2019_01_080 crossref_primary_10_1007_s10508_020_01818_4 crossref_primary_10_1016_j_pscychresns_2025_111957 crossref_primary_10_1016_j_bpsc_2020_11_012 crossref_primary_10_1016_j_ynirp_2023_100188 crossref_primary_10_3389_fneur_2019_00655 crossref_primary_10_3390_clockssleep7010015 crossref_primary_10_1016_j_bpsc_2024_11_010 crossref_primary_10_3389_fneur_2018_01177 crossref_primary_10_1007_s11682_022_00685_y crossref_primary_10_1002_jmri_27691 crossref_primary_10_3389_fneur_2020_00684 crossref_primary_10_3389_fnhum_2024_1392199 crossref_primary_10_1016_j_neuroimage_2022_119296 crossref_primary_10_1007_s00406_024_01949_y crossref_primary_10_1016_j_neuroimage_2019_116223 crossref_primary_10_3389_fnhum_2023_1276994 crossref_primary_10_1016_j_ijchp_2022_100319 crossref_primary_10_1007_s13311_021_01030_9 crossref_primary_10_3389_fnagi_2022_850977 crossref_primary_10_3390_tomography9020072 crossref_primary_10_3390_s24237742 crossref_primary_10_3389_fnins_2019_00536 crossref_primary_10_1089_neur_2024_0122 crossref_primary_10_1089_brain_2023_0087 crossref_primary_10_1002_hbm_24827 crossref_primary_10_3390_brainsci14080742 crossref_primary_10_1038_s42003_021_02815_6 crossref_primary_10_1007_s11682_019_00217_1 crossref_primary_10_1016_j_nicl_2019_102080 crossref_primary_10_1016_j_nicl_2019_102083 crossref_primary_10_1162_jocn_a_01915 crossref_primary_10_3389_fonc_2022_882313 |
Cites_doi | 10.1016/j.neuroimage.2004.07.010 10.1016/j.neuroimage.2015.10.079 10.1006/nimg.2001.0978 10.1002/mrm.26251 10.1016/j.neuroimage.2010.09.025 10.1016/j.neuroimage.2009.06.060 10.1016/j.neuroimage.2009.05.047 10.1109/42.906424 10.1016/j.neuroimage.2005.02.018 10.1016/j.jneumeth.2010.03.021 10.1016/j.neuroimage.2007.04.065 10.1002/mrm.25444 10.1016/S1361-8415(01)00036-6 10.1016/j.neuroimage.2012.02.018 10.1006/nimg.1998.0396 10.1006/nimg.1998.0395 10.1097/00004728-199801000-00028 10.1006/nimg.1999.0439 10.1016/j.neuroimage.2009.11.044 10.1098/rstb.2001.0915 10.1016/j.neuroimage.2017.02.085 10.1002/mrm.1910340111 10.1016/S1053-8119(03)00073-9 10.1073/pnas.200033797 10.1371/journal.pone.0116320 10.7554/eLife.15166 10.1016/S1053-8119(03)00336-7 10.1016/j.neuroimage.2004.07.022 10.1002/hbm.460020402 10.1016/j.neuroimage.2008.12.037 10.1006/nimg.1995.1012 10.1002/mrm.23317 10.1016/j.jneumeth.2004.07.014 10.1016/j.media.2007.06.004 10.1016/j.neuroimage.2014.06.045 10.1006/nimg.1999.0458 10.1016/j.neuroimage.2010.05.075 10.1097/00004728-199403000-00005 10.1002/hbm.460030303 10.1002/hbm.460030302 |
ContentType | Journal Article |
Copyright | 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. 2017 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. – notice: 2017 Wiley Periodicals, Inc. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.23737 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Impact of T1 vs EPI Spatial Normalization Templates |
EISSN | 1097-0193 |
EndPage | 5342 |
ExternalDocumentID | PMC5565844 28745021 10_1002_hbm_23737 HBM23737 |
Genre | shortCommunication Journal Article Comparative Study |
GrantInformation_xml | – fundername: National Science Foundation funderid: 1539067 – fundername: National Institute of Health funderid: P20GM103472; R01EB005846; 1R01EB006841; R01HD082257; 5R01MH109329; 1R01DA026964; R01MH078160; R01MH085328; R01MH106564; K23MH101322; K23MH107734; K01MH109766 – fundername: NIMH NIH HHS grantid: K01 MH109766 – fundername: NIBIB NIH HHS grantid: R01 EB005846 – fundername: NIBIB NIH HHS grantid: R01 EB020407 – fundername: NIBIB NIH HHS grantid: R01 EB006841 – fundername: NIGMS NIH HHS grantid: P20 GM103472 – fundername: NIMH NIH HHS grantid: K23 MH107734 – fundername: NIBIB NIH HHS grantid: R01 EB000840 – fundername: ; grantid: 1539067 – fundername: ; grantid: P20GM103472; R01EB005846; 1R01EB006841; R01HD082257; 5R01MH109329; 1R01DA026964; R01MH078160; R01MH085328; R01MH106564; K23MH101322; K23MH107734; K01MH109766 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AANHP AAONW AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c4437-c24cb75a7f59cccae282f1ee0e7868bfe46e9f4cf3085087ce1a584e06f342463 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 18:45:54 EDT 2025 Tue Aug 05 08:54:01 EDT 2025 Wed Aug 13 09:32:36 EDT 2025 Thu Apr 03 06:49:02 EDT 2025 Tue Jul 01 01:10:48 EDT 2025 Thu Apr 24 22:52:01 EDT 2025 Wed Jan 22 16:54:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | fMRI spatial normalization echo planar image coregistration |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4437-c24cb75a7f59cccae282f1ee0e7868bfe46e9f4cf3085087ce1a584e06f342463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0001-9058-0747 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.23737 |
PMID | 28745021 |
PQID | 1947412507 |
PQPubID | 996345 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5565844 proquest_miscellaneous_1923745004 proquest_journals_1947412507 pubmed_primary_28745021 crossref_citationtrail_10_1002_hbm_23737 crossref_primary_10_1002_hbm_23737 wiley_primary_10_1002_hbm_23737_HBM23737 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2017 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: November 2017 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Antonio – name: Hoboken |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2017 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2009; 47 2010; 53 2009; 46 2002; 15 1995; 34 2015; 74 2004; 23 2010; 189 2015; 10 2016; 124 2008; 12 2011; 54 2005 2017; 152 2004; 1265 2003; 19 1995b; 2 2005; 26 1995; 2 1995; 3 2009; 48 1998; 22 2007; 37 2001; 20 1999; 9 2016; 5 2005; 142 1995a; 2 2001; 5 2017; 77 2000; 97 1999; 10 1994; 18 2014 2013 2014; 100 2012; 68 2003; 20 2001; 356 2010; 50 1988 2012; 62 Ardekani BA (e_1_2_6_4_1) 2004; 1265 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Martino AD (e_1_2_6_35_1) 2013 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 Talairach J (e_1_2_6_41_1) 1988 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 Huntenberg JM (e_1_2_6_29_1) 2014 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_26_1 e_1_2_6_47_1 |
References_xml | – volume: 54 start-page: 2033 year: 2011 end-page: 2044 article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration publication-title: NeuroImage – volume: 10 year: 2015 end-page: e0116320 article-title: Distortion correction in EPI using an extended PSF method with a reversed phase gradient approach publication-title: PLoS One – volume: 46 start-page: 786 year: 2009 end-page: 802 article-title: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration publication-title: NeuroImage – volume: 10 start-page: 107 year: 1999 end-page: 113 article-title: Detecting structural changes in whole brain based on nonlinear deformations‐application to schizophrenia research publication-title: NeuroImage – volume: 34 start-page: 65 year: 1995 end-page: 73 article-title: Correction for geometric distortion in echo planar images from B0 field variations publication-title: Magn Reson Med – volume: 26 start-page: 839 year: 2005 end-page: 851 article-title: Unified segmentation publication-title: NeuroImage – year: 2005 – volume: 12 start-page: 26 year: 2008 end-page: 41 article-title: Symmetric diffeomorphic image registration with cross‐correlation: Evaluating automated labeling of elderly and neurodegenerative brain publication-title: Med Image Anal – volume: 97 start-page: 11050 year: 2000 end-page: 11055 article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images publication-title: Proc Natl Acad Sci USA – volume: 20 start-page: 45 year: 2001 end-page: 57 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation‐maximization algorithm publication-title: IEEE Trans Med Imag – volume: 2 start-page: 165 year: 1995a end-page: 189 article-title: Spatial registration and normalization of images publication-title: Hum Brain Mapp – volume: 62 start-page: 2222 year: 2012 end-page: 2231 article-title: The Human Connectome Project: A data acquisition perspective publication-title: NeuroImage – volume: 9 start-page: 179 year: 1999 end-page: 194 article-title: Cortical surface‐based analysis. I. Segmentation and surface reconstruction publication-title: NeuroImage – volume: 2 start-page: 189 year: 1995b end-page: 210 article-title: Statistical parametric maps in functional imaging: A general linear approach publication-title: Hum Brain Mapp – volume: 124 start-page: 1065 year: 2016 end-page: 1068 article-title: Sharing the wealth: Neuroimaging data repositories publication-title: NeuroImage – volume: 23 start-page: S196 year: 2004 end-page: S207 article-title: Optimizing the fMRI data‐processing pipeline using prediction and reproducibility performance metrics: I. A preliminary group analysis publication-title: NeuroImage – volume: 100 start-page: 710 year: 2014 end-page: 714 article-title: A study‐specific fMRI normalization approach that operates directly on high resolution functional EPI data at 7 Tesla publication-title: NeuroImage – volume: 18 start-page: 192 year: 1994 end-page: 205 article-title: Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space publication-title: J Comput Assist Tomogr – volume: 1265 start-page: 49 year: 2004 end-page: 59 article-title: Impact of inter‐subject image registration on group analysis of fMRI data in international congress series publication-title: Elsevier – year: 2014 – volume: 68 start-page: 1239 year: 2012 end-page: 1246 article-title: Distortion correction in EPI at ultra‐high‐field MRI using PSF mapping with optimal combination of shift detection dimension publication-title: Magn Reson Med – volume: 50 start-page: 175 year: 2010 end-page: 183 article-title: Efficient correction of inhomogeneous static magnetic field‐induced distortion in Echo Planar Imaging publication-title: NeuroImage – volume: 15 start-page: 273 year: 2002 end-page: 289 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single‐subject brain publication-title: NeuroImage – volume: 77 start-page: 1749 year: 2017 end-page: 1761 article-title: EPI Nyquist ghost and geometric distortion correction by two‐frame phase labeling publication-title: Magn Reson Med – volume: 53 start-page: 85 year: 2010 end-page: 93 article-title: Evaluating the validity of volume‐based and surface‐based brain image registration for developmental cognitive neuroscience studies in children 4 to 11 years of age publication-title: NeuroImage – volume: 356 start-page: 1293 year: 2001 end-page: 1322 article-title: A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM) publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 152 start-page: 450 year: 2017 end-page: 466 article-title: Towards a comprehensive framework for movement and distortion correction of diffusion MR images: Within volume movement publication-title: NeuroImage – volume: 2 start-page: 89 year: 1995 end-page: 101 article-title: A probabilistic atlas of the human brain: Theory and rationale for its development. The International Consortium for Brain Mapping (ICBM) publication-title: NeuroImage – volume: 3 start-page: 161 year: 1995 end-page: 164 article-title: Spatial normalization origins: Objectives, applications, and alternatives publication-title: Hum Brain Mapp – volume: 10 start-page: 1 year: 1999 end-page: 5 article-title: How many subjects constitute a study? publication-title: NeuroImage – year: 1988 – volume: 20 start-page: 870 year: 2003 end-page: 888 article-title: How to correct susceptibility distortions in spin‐echo echo‐planar images: Application to diffusion tensor imaging publication-title: NeuroImage – volume: 23 start-page: S139 year: 2004 end-page: S150 article-title: Geodesic estimation for large deformation anatomical shape averaging and interpolation publication-title: NeuroImage – volume: 19 start-page: 430 year: 2003 end-page: 441 article-title: Optimized EPI for fMRI studies of the orbitofrontal cortex publication-title: NeuroImage – volume: 48 start-page: 63 year: 2009 end-page: 72 article-title: Accurate and robust brain image alignment using boundary‐based registration publication-title: NeuroImage – volume: 22 start-page: 153 year: 1998 end-page: 165 article-title: Automated image registration: II. Intersubject validation of linear and nonlinear models publication-title: J Comput Assist Tomogr – volume: 47 start-page: 1522 year: 2009 end-page: 1531 article-title: Reducing inter‐subject anatomical variation: Effect of normalization method on sensitivity of functional magnetic resonance imaging data analysis in auditory cortex and the superior temporal region publication-title: NeuroImage – volume: 37 start-page: 866 year: 2007 end-page: 875 article-title: Spatial normalization of lesioned brains: Performance evaluation and impact on fMRI analyses publication-title: NeuroImage – volume: 142 start-page: 67 year: 2005 end-page: 76 article-title: Quantitative comparison of algorithms for inter‐subject registration of 3D volumetric brain MRI scans publication-title: J Neurosci Methods – year: 2013 article-title: The autism brain imaging data exchange: Towards a large‐scale evaluation of the intrinsic brain architecture in autism publication-title: Mol Psychiatry – volume: 9 start-page: 195 year: 1999 end-page: 207 article-title: Cortical surface‐based analysis. II: Inflation, flattening, and a surface‐based coordinate system publication-title: NeuroImage – volume: 5 start-page: 143 year: 2001 end-page: 156 article-title: A global optimisation method for robust affine registration of brain images publication-title: Med Image Anal – volume: 74 start-page: 661 year: 2015 end-page: 672 article-title: Designing hyperbolic secant excitation pulses to reduce signal dropout in gradient‐echo echo‐planar imaging publication-title: Magn Reson Med – volume: 189 start-page: 257 year: 2010 end-page: 266 article-title: Study‐specific EPI template improves group analysis in functional MRI of young and older adults publication-title: J Neurosci Methods – volume: 5 start-page: e15166 year: 2016 article-title: Somatic and vicarious pain are represented by dissociable multivariate brain patterns publication-title: Elife – year: 2013 – ident: e_1_2_6_7_1 doi: 10.1016/j.neuroimage.2004.07.010 – ident: e_1_2_6_15_1 doi: 10.1016/j.neuroimage.2015.10.079 – ident: e_1_2_6_42_1 doi: 10.1006/nimg.2001.0978 – ident: e_1_2_6_46_1 doi: 10.1002/mrm.26251 – ident: e_1_2_6_9_1 doi: 10.1016/j.neuroimage.2010.09.025 – ident: e_1_2_6_26_1 doi: 10.1016/j.neuroimage.2009.06.060 – ident: e_1_2_6_40_1 doi: 10.1016/j.neuroimage.2009.05.047 – ident: e_1_2_6_47_1 doi: 10.1109/42.906424 – ident: e_1_2_6_6_1 doi: 10.1016/j.neuroimage.2005.02.018 – year: 2013 ident: e_1_2_6_35_1 article-title: The autism brain imaging data exchange: Towards a large‐scale evaluation of the intrinsic brain architecture in autism publication-title: Mol Psychiatry – ident: e_1_2_6_28_1 doi: 10.1016/j.jneumeth.2010.03.021 – ident: e_1_2_6_12_1 doi: 10.1016/j.neuroimage.2007.04.065 – ident: e_1_2_6_44_1 doi: 10.1002/mrm.25444 – ident: e_1_2_6_31_1 doi: 10.1016/S1361-8415(01)00036-6 – ident: e_1_2_6_11_1 – ident: e_1_2_6_43_1 doi: 10.1016/j.neuroimage.2012.02.018 – ident: e_1_2_6_17_1 doi: 10.1006/nimg.1998.0396 – ident: e_1_2_6_13_1 doi: 10.1006/nimg.1998.0395 – ident: e_1_2_6_45_1 doi: 10.1097/00004728-199801000-00028 – ident: e_1_2_6_22_1 doi: 10.1006/nimg.1999.0439 – ident: e_1_2_6_27_1 doi: 10.1016/j.neuroimage.2009.11.044 – ident: e_1_2_6_36_1 doi: 10.1098/rstb.2001.0915 – ident: e_1_2_6_3_1 doi: 10.1016/j.neuroimage.2017.02.085 – ident: e_1_2_6_32_1 doi: 10.1002/mrm.1910340111 – ident: e_1_2_6_14_1 doi: 10.1016/S1053-8119(03)00073-9 – volume-title: Evaluating Nonlinear Coregistration of BOLD EPI and T1 Images year: 2014 ident: e_1_2_6_29_1 – ident: e_1_2_6_16_1 doi: 10.1073/pnas.200033797 – ident: e_1_2_6_19_1 – ident: e_1_2_6_30_1 doi: 10.1371/journal.pone.0116320 – ident: e_1_2_6_34_1 doi: 10.7554/eLife.15166 – ident: e_1_2_6_2_1 doi: 10.1016/S1053-8119(03)00336-7 – ident: e_1_2_6_39_1 doi: 10.1016/j.neuroimage.2004.07.022 – ident: e_1_2_6_21_1 doi: 10.1002/hbm.460020402 – ident: e_1_2_6_33_1 doi: 10.1016/j.neuroimage.2008.12.037 – ident: e_1_2_6_37_1 doi: 10.1006/nimg.1995.1012 – ident: e_1_2_6_38_1 doi: 10.1002/mrm.23317 – ident: e_1_2_6_5_1 doi: 10.1016/j.jneumeth.2004.07.014 – ident: e_1_2_6_8_1 doi: 10.1016/j.media.2007.06.004 – ident: e_1_2_6_25_1 doi: 10.1016/j.neuroimage.2014.06.045 – ident: e_1_2_6_23_1 doi: 10.1006/nimg.1999.0458 – ident: e_1_2_6_24_1 doi: 10.1016/j.neuroimage.2010.05.075 – volume: 1265 start-page: 49 year: 2004 ident: e_1_2_6_4_1 article-title: Impact of inter‐subject image registration on group analysis of fMRI data in international congress series publication-title: Elsevier – ident: e_1_2_6_10_1 doi: 10.1097/00004728-199403000-00005 – ident: e_1_2_6_20_1 doi: 10.1002/hbm.460030303 – ident: e_1_2_6_18_1 doi: 10.1002/hbm.460030302 – volume-title: A Co‐Planar Sterotaxic Atlas of a Human Brain year: 1988 ident: e_1_2_6_41_1 |
SSID | ssj0011501 |
Score | 2.6103747 |
Snippet | Spatial normalization of brains to a standardized space is a widely used approach for group studies in functional magnetic resonance imaging (fMRI) data.... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5331 |
SubjectTerms | Adolescent Adult Affine transformations Autistic Disorder - diagnostic imaging Autistic Disorder - physiopathology Brain Brain - diagnostic imaging Brain - physiology Brain - physiopathology Brain mapping Brain Mapping - methods Child Child, Preschool coregistration Data processing Distortion echo planar image fMRI Functional magnetic resonance imaging Genetic transformation Humans Inhibition, Psychological Magnetic resonance imaging Magnetic Resonance Imaging - methods Middle Aged Motor Activity - physiology Neuroimaging Nonlinear Dynamics Pain - diagnostic imaging Pain - physiopathology Rest Software packages Spatial analysis spatial normalization Young Adult |
Title | The impact of T1 versus EPI spatial normalization templates for fMRI data analyses |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.23737 https://www.ncbi.nlm.nih.gov/pubmed/28745021 https://www.proquest.com/docview/1947412507 https://www.proquest.com/docview/1923745004 https://pubmed.ncbi.nlm.nih.gov/PMC5565844 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VHhAXHi2PhVIZhFAv2ebhx0acCmq1RVpUrVqpB6QodsYqYptFZPcAv54Z5wFLQULcInnsJPaM_dme-QbgleJF1lYySpSXkawQo0lWmUjnCgkfG69DzsjZBz29kO8v1eUWvOljYVp-iOHAjS0jzNds4KVtDn-Shl7Z63GamYwjydlXiwHRfKCOYqATNlu0xEY5zcA9q1CcHg41N9eiGwDzpp_kr_g1LEAn9-Bj_-mt38nn8Xplx-77b6yO__lv9-FuB0zFUatJD2AL6x3YPappU379TbwWwVU0nMHvwO1ZdyO_C3PSM9GGWoqlF-eJYD-PdSOOz05Fw-7a1GjNwHjRRXwKZsNaMMQVBJiFn81PBfupijLwo2DzEC5Ojs_fTaMuT0PkpMxM5FLprFGl8Sp3pBFI2zifIMZoJnpiPUqNuZfOZ8yPNzEOk5JwD8baZzKVOnsE2_WyxicgYm1p5LBkHCFT1HmVUHXvJFqbmaoawUE_YoXrSMw5l8aiaOmX04K6rghdN4KXg-iXlrnjT0J7_bAXnfE2RUL6Ign4xVT8Yigms-O7lLLG5ZplqL5UNMWM4HGrJcNbQgoBwk4jMBv6MwgwpfdmSf3pKlB7K8WIkNo8COrx9w8vpm9n4eHpv4s-gzspg5IQSbkH26uva3xOkGpl9-FWKs_2gwX9AG5oHXg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIcFe-NhgdAwwCKG9pMuHYzcSLwM2tbBMqOqkvaAocc7atC5FtH0Yfz13zgeUgYR4i-Szk9h39s_23e8AXse8yBal9ILYSk-WiN4gKrWnkhgJH2urXM7I9EQNT-XHs_hsDd62sTA1P0R34MaW4eZrNnA-kN7_yRp6Xlz1w0hH-hbc5ozezJz_YdyRRzHUcdstWmS9hObgllfID_e7qqur0Q2IedNT8lcE65ago_vwpf342vPksr9cFH3z_Tdex__9uwdwr8Gm4qBWpoewhtUmbB1UtC-_uhZvhPMWdcfwm3AnbS7lt2BMqibqaEsxs2ISCHb1WM7F4eeRmLPHNjVaMTaeNkGfggmxpoxyBWFmYdPxSLCrqsgdRQrOH8Hp0eHk_dBrUjV4RspIeyaUptBxrm2cGFIKpJ2cDRB91AM1KCxKhYmVxkZMkTfQBoOcoA_6ykYylCp6DOvVrMInIHxV0NBhzlBChqiSMqDq1kgsikiXZQ_22iHLTMNjzuk0plnNwBxm1HWZ67oevOpEv9bkHX8S2m3HPWvsd54FpDCSsJ9PxS-7YrI8vk7JK5wtWYbqy5hmmR5s12rSvcVlESD41AO9okCdALN6r5ZUF-eO3TuOGRRSm3tOP_7-4dnwXeoedv5d9AXcHU7S4-x4dPLpKWyEjFFcYOUurC--LfEZIaxF8dwZ0g9ytCC9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dSxtBEB9sBOlLsWprqtVVivhy9T72I0efrBoSbSSIgm_HfcyiEC9ikgf_-87sXa4GK_h2sLN3x8zuzm93Zn4L8EOxk80K6QXKSk8WiF4nKoynY4WEj43V7s7IwaXu3cjzW3W7BL_mtTAVP0Rz4MYzw63XPMEfC3v0jzT0Lnv4GUYmMh9gmYN9nM8VymETQiCk43Zb5GO9mJbgOa2QHx41XRed0SuE-TpR8iWAdR6ouwqfaugojitbf4YlLNdg_bikbfPDszgQLpnTnZKvwcqgjpmvwxWNBFEVQ4qxFdeB4EyM2UScDftiwgnV9NKSoeuorskUzFc1YhAqCNIKO7jqC84kFaljMMHJBtx0z65Pel59k4KXSxkZLw9lnhmVGqvinGyGtNGyAaKPpqM7mUWpMbYytxEz2HVMjkFKKkVf20iGUkdfoFWOS9wE4euMVIspe3oZoo6LgLrbXGKWRaYo2nA4V2mS1zTjfNvFKKkIksOEtJ847bdhvxF9rLg1_ie0PbdLUk-vSRKQQSVBM5-a95pmmhgc7UhLHM9YhvpLRYtAG75WZmy-4kj-Cd20wSwYuBFg0u3FlvL-zpFvK8WYjd556IbC2z-e9H4P3MO394vuwsrwtJv86V9ebMHHkBGEK3vchtb0aYbfCf9Msx03zv8CAlT_Lw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+impact+of+T1+versus+EPI+spatial+normalization+templates+for+fMRI+data+analyses&rft.jtitle=Human+brain+mapping&rft.au=Calhoun%2C+Vince+D&rft.au=Wager%2C+Tor+D&rft.au=Krishnan%2C+Anjali&rft.au=Rosch%2C+Keri+S&rft.date=2017-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=38&rft.issue=11&rft.spage=5331&rft.epage=5342&rft_id=info:doi/10.1002%2Fhbm.23737&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |