The impact of T1 versus EPI spatial normalization templates for fMRI data analyses

Spatial normalization of brains to a standardized space is a widely used approach for group studies in functional magnetic resonance imaging (fMRI) data. Commonly used template‐based approaches are complicated by signal dropout and distortions in echo planar imaging (EPI) data. The most widely used...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 38; no. 11; pp. 5331 - 5342
Main Authors Calhoun, Vince D., Wager, Tor D., Krishnan, Anjali, Rosch, Keri S., Seymour, Karen E., Nebel, Mary Beth, Mostofsky, Stewart H., Nyalakanai, Prashanth, Kiehl, Kent
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.11.2017
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Spatial normalization of brains to a standardized space is a widely used approach for group studies in functional magnetic resonance imaging (fMRI) data. Commonly used template‐based approaches are complicated by signal dropout and distortions in echo planar imaging (EPI) data. The most widely used software packages implement two common template‐based strategies: (1) affine transformation of the EPI data to an EPI template followed by nonlinear registration to an EPI template (EPInorm) and (2) affine transformation of the EPI data to the anatomic image for a given subject, followed by nonlinear registration of the anatomic data to an anatomic template, which produces a transformation that is applied to the EPI data (T1norm). EPI distortion correction can be used to adjust for geometric distortion of EPI relative to the T1 images. However, in practice, this EPI distortion correction step is often skipped. We compare these template‐based strategies empirically in four large datasets. We find that the EPInorm approach consistently shows reduced variability across subjects, especially in the case when distortion correction is not applied. EPInorm also shows lower estimates for coregistration distances among subjects (i.e., within‐dataset similarity is higher). Finally, the EPInorm approach shows higher T values in a task‐based dataset. Thus, the EPInorm approach appears to amplify the power of the sample compared to the T1norm approach when not using distortion correction (i.e., the EPInorm boosts the effective sample size by 12–25%). In sum, these results argue for the use of EPInorm over the T1norm when no distortion correction is used. Hum Brain Mapp 38:5331–5342, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1065-9471
1097-0193
1097-0193
DOI:10.1002/hbm.23737