Dysbiotic Subgingival Microbial Communities in Periodontally Healthy Patients With Rheumatoid Arthritis
Objective Studies that demonstrate an association between rheumatoid arthritis (RA) and dysbiotic oral microbiomes are often confounded by the presence of extensive periodontitis in these individuals. This study was undertaken to investigate the role of RA in modulating the periodontal microbiome by...
Saved in:
Published in | Arthritis & rheumatology (Hoboken, N.J.) Vol. 70; no. 7; pp. 1008 - 1013 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Objective
Studies that demonstrate an association between rheumatoid arthritis (RA) and dysbiotic oral microbiomes are often confounded by the presence of extensive periodontitis in these individuals. This study was undertaken to investigate the role of RA in modulating the periodontal microbiome by comparing periodontally healthy individuals with RA to those without RA.
Methods
Subgingival plaque was collected from periodontally healthy individuals (22 with RA and 19 without RA), and the 16S gene was sequenced on an Illumina MiSeq platform. Bacterial biodiversity and co‐occurrence patterns were examined using the QIIME and PhyloToAST pipelines.
Results
The subgingival microbiomes differed significantly between patients with RA and controls based on both community membership and the abundance of lineages, with 41.9% of the community differing in abundance and 19% in membership. In contrast to the sparse and predominantly congeneric co‐occurrence networks seen in controls, RA patients revealed a highly connected grid containing a large intergeneric hub anchored by known periodontal pathogens. Predictive metagenomic analysis (PICRUSt) demonstrated that arachidonic acid and ester lipid metabolism pathways might partly explain the robustness of this clustering. As expected from a periodontally healthy cohort, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans were not significantly different between groups; however, Cryptobacterium curtum, another organism capable of producing large amounts of citrulline, emerged as a robust discriminant of the microbiome in individuals with RA.
Conclusion
Our data demonstrate that the oral microbiome in RA is enriched for inflammophilic and citrulline‐producing organisms, which may play a role in the production of autoantigenic citrullinated peptides in RA. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Co-first authors |
ISSN: | 2326-5191 2326-5205 |
DOI: | 10.1002/art.40485 |