Electron Compton scattering and the measurement of electron momentum distributions in solids

Summary Electron Compton scattering is a technique that gives information on the electron momentum density of states and is used to characterize the ground state electronic structure in solids. Extracting the momentum density of states requires us to assume the so‐called ‘impulse approximation’, whi...

Full description

Saved in:
Bibliographic Details
Published inJournal of microscopy (Oxford) Vol. 279; no. 3; pp. 185 - 188
Main Authors TALMANTAITE, A., HUNT, M.R.C., MENDIS, B.G.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.09.2020
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Summary Electron Compton scattering is a technique that gives information on the electron momentum density of states and is used to characterize the ground state electronic structure in solids. Extracting the momentum density of states requires us to assume the so‐called ‘impulse approximation’, which is valid for large energy losses. Here, the robustness of the impulse approximation in the low energy transfer regime is tested and confirmed on amorphous carbon films. Compared to traditional Compton measurements, this provides additional benefits of more efficient data collection and a simplified way to probe valence electrons, which govern solid state bonding. However, a potential complication is the increased background from the plasmon signal. To overcome this, a novel plasmon background subtraction routine is proposed for samples that are resistant to beam damage. Lay Description Properties of solids depend on their electronic structure which can be studied using electron Compton scattering technique. Here, an electron beam is used to penetrate a very thin sample. During the interaction between the electrons in the beam and electrons in the sample, the former transfer a part of their energy to the latter, resulting in a measurable energy loss of the transmitted beam. The amount of the energy transfer depends on the angle of incidence between the beam and the sample. Typically, the experiments are carried out using high tilt angles and high energy transfer; however, in this work, we show that even smaller angles of incidence are suitable, which improve the signal quality and ease data processing procedures.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-2720
1365-2818
DOI:10.1111/jmi.12854