Anticonvulsive properties of soticlestat, a novel cholesterol 24‐hydroxylase inhibitor

Objective The formation of 24S‐hydroxycholesterol is a brain‐specific mechanism of cholesterol catabolism catalyzed by cholesterol 24‐hydroxylase (CYP46A1, also known as CH24H). CH24H has been implicated in various biological mechanisms, whereas pharmacological lowering of 24S‐hydroxycholesterol has...

Full description

Saved in:
Bibliographic Details
Published inEpilepsia (Copenhagen) Vol. 63; no. 6; pp. 1580 - 1590
Main Authors Nishi, Toshiya, Metcalf, Cameron S., Fujimoto, Shinji, Hasegawa, Shigeo, Miyamoto, Maki, Sunahara, Eiji, Watanabe, Sayuri, Kondo, Shinichi, White, H. Steve
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.06.2022
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Objective The formation of 24S‐hydroxycholesterol is a brain‐specific mechanism of cholesterol catabolism catalyzed by cholesterol 24‐hydroxylase (CYP46A1, also known as CH24H). CH24H has been implicated in various biological mechanisms, whereas pharmacological lowering of 24S‐hydroxycholesterol has not been fully studied. Soticlestat is a novel small‐molecule inhibitor of CH24H. Its therapeutic potential was previously identified in a mouse model with an epileptic phenotype. In the present study, the anticonvulsive property of soticlestat was characterized in rodent models of epilepsy that have long been used to identify antiseizure medications. Methods The anticonvulsive property of soticlestat was investigated in maximal electroshock seizures (MES), pentylenetetrazol (PTZ) acute seizures, 6‐Hz psychomotor seizures, audiogenic seizures, amygdala kindling, PTZ kindling, and corneal kindling models. Soticlestat was characterized in a PTZ kindling model under steady‐state pharmacokinetics to relate its anticonvulsive effects to pharmacodynamics. Results Among models of acutely evoked seizures, whereas anticonvulsive effects of soticlestat were identified in Frings mice, a genetic model of audiogenic seizures, it was found ineffective in MES, acute PTZ seizures, and 6‐Hz seizures. The protective effects of soticlestat against audiogenic seizures increased with repetitive dosing. Soticlestat was also tested in models of progressive seizure severity. Soticlestat treatment delayed kindling acquisition, whereas fully kindled animals were not protected. Importantly, soticlestat suppressed the progression of seizure severity in correlation with 24S‐hydroxycholesterol lowering in the brain, suggesting that 24S‐hydroxycholesterol can be aggressively reduced to produce more potent effects on seizure development in kindling acquisition. Significance The data collectively suggest that soticlestat can ameliorate seizure symptoms through a mechanism distinct from conventional antiseizure medications. With its novel mechanism of action, soticlestat could constitute a novel class of antiseizure medications for treatment of intractable epilepsy disorders such as developmental and epileptic encephalopathy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0013-9580
1528-1167
DOI:10.1111/epi.17232