Design and Synthesis of Inductorless Passive Cell Operating as Stop-Band Negative Group Delay Function

This paper develops an original circuit theory of unfamiliar stop-band (SB) negative group delay (NGD) topology. The proposed NGD topology is implemented without inductor component. The developed theory is established with passive cell constituted by RC-network based high-pass (HP) and low-pass (LP)...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 100141 - 100153
Main Authors Guerin, Mathieu, Liu, Yang, Douyere, Alexandre, Chan, George, Wan, Fayu, Lallechere, Sebastien, Rahajandraibe, Wenceslas, Ravelo, Blaise
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper develops an original circuit theory of unfamiliar stop-band (SB) negative group delay (NGD) topology. The proposed NGD topology is implemented without inductor component. The developed theory is established with passive cell constituted by RC-network based high-pass (HP) and low-pass (LP) NGD composite circuits. The analytical investigation of the SB-NGD circuit is introduced from the elaboration of voltage transfer function (VTF). The canonical form enabling to identify SB-NGD circuit is analytically expressed. The different SB-NGD characteristics as GD value, and, center and cut-off frequencies are innovatively formulated in function of the circuit resistor and capacitor components. The existence condition of SB-NGD function is also established. The inductorless SB-NGD topology is validated by a proof-of-concept (POC) circuit implemented by surface-mounted-device (SMD) component based printed circuit board (PCB). The measured VTF magnitude and group delay (GD) are extracted from the experimented S-parameters. A good agreement between the calculated, simulated and measured results is obtained. The SB-NGD behavior has measured center frequency of about 32 MHz. The lower- and upper-NGD cut-off frequencies are about 9.15 MHz and 98.3 MHz. The optimal NGD values at low and higher frequencies are −3.25 ns and −56 ps.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3095814