A n-octadecane/hierarchically porous TiO2 form-stable PCM for thermal energy storage
For a phase-change material (PCM) confined in a porous structure, the interfacial interactions between the PCM and the porous skeleton are the decisive factors in latent heat storage performance. In this work, a novel composite PCM based on hierarchically porous TiO2 and n-octadecane was successfull...
Saved in:
Published in | Renewable energy Vol. 145; pp. 1465 - 1473 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | For a phase-change material (PCM) confined in a porous structure, the interfacial interactions between the PCM and the porous skeleton are the decisive factors in latent heat storage performance. In this work, a novel composite PCM based on hierarchically porous TiO2 and n-octadecane was successfully synthesized. The porous TiO2 was prepared by a soft-template method, and the composite PCM was fabricated by introducing n-octadecane under vacuum. Transmission electron microscope and X-ray diffraction (XRD) results revealed that the as-prepared supporting matrix was crystalline TiO2, and N2 adsorption/desorption isotherms indicated that TiO2 has a hierarchically porous structure. For composite PCMs, Fourier transform infrared spectroscopy and XRD spectra revealed that no chemical bonds were formed between n-octadecane and TiO2. Scanning electron microscopy results showed abundant n-octadecane enclosed within the nanopores and closely bound on the surfaces of the hierarchically porous TiO2, as a result of capillary forces and interfacial tension. Porous TiO2 exhibited high adsorption for n-octadecane (50 wt%), and the relative enthalpy of the composite PCM was as high as 85.8 J/g. Compared with pure n-octadecane, the thermal conductivity of the as-prepared composite PCMs (e.g., 50 wt% n-octadecane sample) was improved by 138% with the addition of porous TiO2. After 800 melting/solidifying cycles, the composite PCMs exhibited excellent thermal reliability and high enthalpy. The influence of the TiO2 pore structure on n-octadecane crystallization behavior is shown in the results.
•Hierarchically porous TiO2 nanomaterial provided an ideal skeleton.•A novel n-octadecane/hierarchically porous TiO2 composite PCMs was synthesized.•The effect of the nanoporous structure on crystallization is demonstrated. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0960-1481 1879-0682 |
DOI: | 10.1016/j.renene.2019.06.070 |