A n-octadecane/hierarchically porous TiO2 form-stable PCM for thermal energy storage

For a phase-change material (PCM) confined in a porous structure, the interfacial interactions between the PCM and the porous skeleton are the decisive factors in latent heat storage performance. In this work, a novel composite PCM based on hierarchically porous TiO2 and n-octadecane was successfull...

Full description

Saved in:
Bibliographic Details
Published inRenewable energy Vol. 145; pp. 1465 - 1473
Main Authors Li, Chaoen, Yu, Hang, Song, Yuan, Wang, Meng, Liu, Zhiyuan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:For a phase-change material (PCM) confined in a porous structure, the interfacial interactions between the PCM and the porous skeleton are the decisive factors in latent heat storage performance. In this work, a novel composite PCM based on hierarchically porous TiO2 and n-octadecane was successfully synthesized. The porous TiO2 was prepared by a soft-template method, and the composite PCM was fabricated by introducing n-octadecane under vacuum. Transmission electron microscope and X-ray diffraction (XRD) results revealed that the as-prepared supporting matrix was crystalline TiO2, and N2 adsorption/desorption isotherms indicated that TiO2 has a hierarchically porous structure. For composite PCMs, Fourier transform infrared spectroscopy and XRD spectra revealed that no chemical bonds were formed between n-octadecane and TiO2. Scanning electron microscopy results showed abundant n-octadecane enclosed within the nanopores and closely bound on the surfaces of the hierarchically porous TiO2, as a result of capillary forces and interfacial tension. Porous TiO2 exhibited high adsorption for n-octadecane (50 wt%), and the relative enthalpy of the composite PCM was as high as 85.8 J/g. Compared with pure n-octadecane, the thermal conductivity of the as-prepared composite PCMs (e.g., 50 wt% n-octadecane sample) was improved by 138% with the addition of porous TiO2. After 800 melting/solidifying cycles, the composite PCMs exhibited excellent thermal reliability and high enthalpy. The influence of the TiO2 pore structure on n-octadecane crystallization behavior is shown in the results. •Hierarchically porous TiO2 nanomaterial provided an ideal skeleton.•A novel n-octadecane/hierarchically porous TiO2 composite PCMs was synthesized.•The effect of the nanoporous structure on crystallization is demonstrated.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0960-1481
1879-0682
DOI:10.1016/j.renene.2019.06.070