Impact Energy Dissipation and Quantitative Models of Injection Molded Short Fiber-Reinforced Thermoplastics
Glass short fiber-reinforced thermoplastics (SGFRTP) are used to reduce carbon dioxide emissions from transportation equipment, especially household vehicles. The mechanical properties required for SGFRTP include flexural strength, impact resistance, etc. In particular, impact resistance is an impor...
Saved in:
Published in | Polymers Vol. 15; no. 21; p. 4297 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Glass short fiber-reinforced thermoplastics (SGFRTP) are used to reduce carbon dioxide emissions from transportation equipment, especially household vehicles. The mechanical properties required for SGFRTP include flexural strength, impact resistance, etc. In particular, impact resistance is an important indicator of the use of SGFRTP. For this study, a mechanical model was developed to explain the notched impact strength of SGFRTP injection molded products in terms of their interfacial shear strength. The values obtained from the model show good agreement with the experimentally obtained results (R2 > 0.95). Results also suggest that the model applies to different fiber orientation angle and a range of fiber lengths in the molded product that are sufficiently shorter than the critical fiber length. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym15214297 |