Electrodeposition of Ru by atomic layer deposition (ALD)

Studies are presented describing attempts to form a cycle for the growth of Ru nanofilms using the electrochemical form of atomic layer deposition (ALD). Au substrates have been used to form Ru nanofilms, based on layer by layer growth of deposits, using surface limited reactions. These deposits wer...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 53; no. 21; pp. 6157 - 6164
Main Authors Thambidurai, Chandru, Kim, Youn-Geun, Stickney, John L.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Oxford Elsevier Ltd 01.09.2008
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Studies are presented describing attempts to form a cycle for the growth of Ru nanofilms using the electrochemical form of atomic layer deposition (ALD). Au substrates have been used to form Ru nanofilms, based on layer by layer growth of deposits, using surface limited reactions. These deposits were formed using surface limited redox replacement (SLRR), where an atomic layer of a sacrificial element is first deposited by underpotential deposition (UPD), and is then exchanged for the element of interest. The use of the UPD atomic layer limits subsequent growth by limiting the number of electrons available for deposition. In the present study, Pb atomic layers were used, and exposed to solutions of Ru 3+ ions at open circuit. This process can then be repeated to grow films of the desired thickness. It was shown that less than an at.% of Pb was evident in the deposits, using electron probe microanalysis (EPMA), and even that could be removed if a stripping step was added to the ALD cycle. The deposits displayed the expected Ru voltammetry, as well as the Ru hcp XRD pattern. There were some differences in the first 20 cycles, compared with subsequent, suggesting some nucleation process that must be investigated. However, after 20 cycles, the deposit showed the linear growth with the number of cycles expected for an ALD process. The morphology of Ru films, deposited on template-stripped Au was studied using ex situ scanning tunneling microscopy (STM), and showed no evidence of 3D growth.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2008.01.003