Role of Tumor Necrosis Factor (TNF) Receptor-associated Factor 2 (TRAF2) in Distinct and Overlapping CD40 and TNF Receptor 2/CD120b-mediated B Lymphocyte Activation
Members of the tumor necrosis factor receptor (TNFR) family play a variety of roles in the regulation of lymphocyte activation. An important TNFR family member for B cell activation is CD40. CD40 signals stimulate B cell TNF-α secretion, which subsequently signals via TNFR2 (CD120b) to enhance B cel...
Saved in:
Published in | The Journal of biological chemistry Vol. 279; no. 51; pp. 53222 - 53231 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
17.12.2004
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Members of the tumor necrosis factor receptor (TNFR) family play a variety of roles in the regulation of lymphocyte activation. An important TNFR family member for B cell activation is CD40. CD40 signals stimulate B cell TNF-α secretion, which subsequently signals via TNFR2 (CD120b) to enhance B cell activation. Although the function of the pro-apoptotic and pro-inflammatory receptor TNFR1 (CD120a) has been the subject of much research, less is understood about the distinct contributions of CD120b to cell activation and how it stimulates downstream events. Members of the tumor necrosis factor receptor family bind various members of the cytoplasmic adapter protein family, the tumor necrosis factor receptor-associated factors (TRAFs), during signaling. Both CD40 and CD120b bind TNF receptor-associated factor 2 (TRAF2) upon ligand stimulation. Wild type and TRAF2-deficient B cells expressing CD40 or the hybrid molecule (human) CD40 (mouse)-CD120b were examined. CD40- and CD120b-mediated IgM secretion were partly TRAF2-dependent, but only CD40 required TRAF2 for c-Jun N-terminal kinase activation. CD40 and CD120b used primarily divergent mechanisms to activate NF-κB, exemplifying how TNFR family members can use diverse mechanisms to mediate similar downstream events. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M410539200 |