Antiatherogenic properties of high-density lipoproteins from arterial plasma are attenuated as compared to their counterparts of venous origin

High-density lipoprotein (HDL) particles play atheroprotective roles by their ability to efflux cholesterol from foam cells and to protect low-density lipoproteins (LDLs) from oxidative damage in the arterial intima. We hypothesized that antioxidative properties of HDLs can be attenuated in the oxyg...

Full description

Saved in:
Bibliographic Details
Published inNutrition, metabolism, and cardiovascular diseases Vol. 30; no. 1; pp. 33 - 39
Main Authors Bonnefont-Rousselot, Dominique, Benouda, Leila, Bittar, Randa, Darabi-Amin, Maryam, Demondion, Pierre, Lesnik, Philippe, Leprince, Pascal, Kontush, Anatol, Charniot, Jean-Christophe, Giral, Philippe
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 03.01.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:High-density lipoprotein (HDL) particles play atheroprotective roles by their ability to efflux cholesterol from foam cells and to protect low-density lipoproteins (LDLs) from oxidative damage in the arterial intima. We hypothesized that antioxidative properties of HDLs can be attenuated in the oxygen-rich prooxidative arterial environment, contributing to the development of atherosclerosis. To evaluate this hypothesis, we compared antioxidative activity of HDLs from arterial and venous plasmas. Arterial and venous blood samples were simultaneously obtained from 16 patients (age 68 ± 10 years; 75% males) presenting with ischemic or valvular heart disease. Major HDL subfractions and total HDLs were isolated by density gradient ultracentrifugation and their chemical composition and the capacity to protect LDLs from in vitro oxidation were evaluated. HDL-cholesterol, triglycerides and apolipoprotein (apo) B-100 levels were slightly but significantly reduced by −4 to −8% (p < 0.01) in the arterial vs. venous samples. Total mass of HDL subpopulations was similar and HDL subpopulations did not reveal marked compositional differences between the arterial and venous circulation. Potent antioxidative activity of the small, dense HDL3c subpopulation was significantly reduced in the particles of arterial origin vs. their counterparts from venous plasma (increase of +21% in the propagation rate of LDL oxidation, p < 0.05). Interestingly, antioxidative properties of venous HDLs were enhanced in statin-treated patients relative to untreated subjects. Antioxidative properties of small, dense HDLs from arterial plasma are attenuated as compared to the particles of venous origin, consistent with the development of atherosclerosis in the arterial wall. •Antioxidative properties of small, dense arterial HDLs are reduced vs. venous HDLs.•Antioxidative properties of arterial HDLs are enhanced in statin-treated patients.•Arterial and venous sera slightly differ in their lipid profile.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0939-4753
1590-3729
DOI:10.1016/j.numecd.2019.07.022