GFAP expression in the rat brain following sub-chronic exposure to a 900 MHz electromagnetic field signal

Purpose: The rapid development and expansion of mobile communications contributes to the general debate on the effects of electromagnetic fields emitted by mobile phones on the nervous system. This study aims at measuring the glial fibrillary acidic protein (GFAP) expression in 48 rat brains to eval...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of radiation biology Vol. 86; no. 5; pp. 367 - 375
Main Authors Ammari, Mohamed, Gamez, Christelle, Lecomte, Anthony, Sakly, Mohsen, Abdelmelek, Hafedh, De Seze, René
Format Journal Article
LanguageEnglish
Published England Informa UK Ltd 01.05.2010
Taylor & Francis
Taylor and Francis
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose: The rapid development and expansion of mobile communications contributes to the general debate on the effects of electromagnetic fields emitted by mobile phones on the nervous system. This study aims at measuring the glial fibrillary acidic protein (GFAP) expression in 48 rat brains to evaluate reactive astrocytosis, three and 10 days after long-term head-only sub-chronic exposure to a 900 MHz electromagnetic field (EMF) signal, in male rats. Methods: Sprague-Dawley rats were exposed for 45 min/day at a brain-averaged specific absorption rate (SAR) = 1.5 W/kg or 15 min/day at a SAR = 6 W/kg for five days per week during an eight-week period. GFAP expression was measured by the immunocytochemistry method in the following rat brain areas: Prefrontal cortex, cerebellar cortex, dentate gyrus of the hippocampus, lateral globus pallidus of the striatum, and the caudate putamen. Results: Compared to the sham-treated rats, those exposed to the sub-chronic GSM (Global System for mobile communications) signal at 1.5 or 6 W/kg showed an increase in GFAP levels in the different brain areas, three and ten days after treatment. Conclusion: Our results show that sub-chronic exposures to a 900 MHz EMF signal for two months could adversely affect rat brain (sign of a potential gliosis).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0955-3002
1362-3095
DOI:10.3109/09553000903567946