From A to m6A: The Emerging Viral Epitranscriptome
There are over 100 different chemical RNA modifications, collectively known as the epitranscriptome. N6-methyladenosine (m6A) is the most commonly found internal RNA modification in cellular mRNAs where it plays important roles in the regulation of the mRNA structure, stability, translation and nucl...
Saved in:
Published in | Viruses Vol. 13; no. 6; p. 1049 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There are over 100 different chemical RNA modifications, collectively known as the epitranscriptome. N6-methyladenosine (m6A) is the most commonly found internal RNA modification in cellular mRNAs where it plays important roles in the regulation of the mRNA structure, stability, translation and nuclear export. This modification is also found in viral RNA genomes and in viral mRNAs derived from both RNA and DNA viruses. A growing body of evidence indicates that m6A modifications play important roles in regulating viral replication by interacting with the cellular m6A machinery. In this review, we will exhaustively detail the current knowledge on m6A modification, with an emphasis on its function in virus biology. |
---|---|
AbstractList | There are over 100 different chemical RNA modifications, collectively known as the epitranscriptome.
N
6
-methyladenosine (m
6
A) is the most commonly found internal RNA modification in cellular mRNAs where it plays important roles in the regulation of the mRNA structure, stability, translation and nuclear export. This modification is also found in viral RNA genomes and in viral mRNAs derived from both RNA and DNA viruses. A growing body of evidence indicates that m
6
A modifications play important roles in regulating viral replication by interacting with the cellular m
6
A machinery. In this review, we will exhaustively detail the current knowledge on m
6
A modification, with an emphasis on its function in virus biology. There are over 100 different chemical RNA modifications, collectively known as the epitranscriptome. N6-methyladenosine (m6A) is the most commonly found internal RNA modification in cellular mRNAs where it plays important roles in the regulation of the mRNA structure, stability, translation and nuclear export. This modification is also found in viral RNA genomes and in viral mRNAs derived from both RNA and DNA viruses. A growing body of evidence indicates that m6A modifications play important roles in regulating viral replication by interacting with the cellular m6A machinery. In this review, we will exhaustively detail the current knowledge on m6A modification, with an emphasis on its function in virus biology. |
Author | Díez, Juana Geers, Daryl Baquero-Perez, Belinda |
AuthorAffiliation | Virology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; d.geers@erasmusmc.nl |
AuthorAffiliation_xml | – name: Virology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; d.geers@erasmusmc.nl |
Author_xml | – sequence: 1 givenname: Belinda orcidid: 0000-0002-0956-7164 surname: Baquero-Perez fullname: Baquero-Perez, Belinda – sequence: 2 givenname: Daryl surname: Geers fullname: Geers, Daryl – sequence: 3 givenname: Juana surname: Díez fullname: Díez, Juana |
BookMark | eNpdkUtr3DAQx0VJyWObQ7-BoZfmsK1eljQ9FJawaQOBXtJexVgeb7TY1lbyBvrt682G0PQwzDDz5zevC3YyppEYey_4J6WAf34UihvBNbxh5wIAlhpEffJPfMYuStlybgxwe8rOlJa8BgvnTN7kNFSrakrVYFZfqvsHqtYD5U0cN9WvmLGv1rs4ZRxLyHE3pYHesbcd9oUun_2C_bxZ319_X979-HZ7vbpbBq3ltGzQBGUb58Aq44Q02FopLBpFSiqwum4sNxLqzmEgG2QjW2xIaSUwAEi1YLdHbptw63c5Dpj_-ITRPyVS3njMUww9-blJ6zg1ogOhUVjnqAuKEIxAHgzOrK9H1m7fDNQGGueV-lfQ15UxPvhNevROSlvzwzAfnwE5_d5TmfwQS6C-x5HSvnhZa6fASHmQfvhPuk37PM6nOqg0aMVnW7CroyrkVEqm7mUYwf3hq_7lq-ovfQqRow |
CitedBy_id | crossref_primary_10_1128_msystems_01163_23 crossref_primary_10_1128_mbio_03702_21 crossref_primary_10_3390_v13112108 crossref_primary_10_1016_j_jmb_2024_168577 crossref_primary_10_3390_mps7010007 crossref_primary_10_1038_s41564_024_01638_5 crossref_primary_10_1261_rna_078777_121 crossref_primary_10_3390_v15061381 crossref_primary_10_1002_jmv_28324 crossref_primary_10_3389_fmicb_2022_870816 crossref_primary_10_1038_s41467_024_46278_9 crossref_primary_10_1128_mmbr_00057_21 crossref_primary_10_3390_ijms23158122 crossref_primary_10_1080_15476286_2023_2272118 crossref_primary_10_3390_v14020182 crossref_primary_10_2174_0113892029296712240405053201 crossref_primary_10_3389_fimmu_2021_796012 crossref_primary_10_3390_v14081718 crossref_primary_10_3389_fcell_2022_917894 crossref_primary_10_3389_fcimb_2023_1151069 crossref_primary_10_1016_j_gde_2024_102213 crossref_primary_10_15252_embj_2022113378 crossref_primary_10_1261_rna_079959_124 crossref_primary_10_3390_microorganisms10091754 crossref_primary_10_1007_s12275_022_2324_4 crossref_primary_10_2174_2772432817666220412112759 crossref_primary_10_1101_gr_276407_121 crossref_primary_10_1016_j_chembiol_2023_12_004 crossref_primary_10_3389_fimmu_2022_869313 crossref_primary_10_3390_genes13071289 crossref_primary_10_1093_nar_gkac224 crossref_primary_10_1016_j_virol_2023_06_006 crossref_primary_10_3390_v16060945 |
Cites_doi | 10.7554/eLife.26116 10.26508/lsa.201800113 10.1016/S0021-9258(18)99445-7 10.1016/S0021-9258(18)70770-9 10.1074/jbc.M110.104711 10.1016/j.chom.2017.05.008 10.1038/nmicrobiol.2016.11 10.1101/gr.247064.118 10.1074/jbc.RA120.014260 10.1016/j.stem.2014.09.019 10.1016/j.stemcr.2016.11.014 10.1038/nature18298 10.1016/j.chom.2016.09.015 10.1016/j.molcel.2016.01.012 10.1016/j.virol.2020.06.008 10.1038/s41589-018-0184-3 10.1016/j.bbagrm.2018.10.015 10.1016/0022-2836(77)90047-X 10.1016/j.molcel.2012.10.015 10.1038/nsmb.3462 10.1261/rna.063503.117 10.1038/s41589-020-0525-x 10.1038/s41592-019-0570-0 10.1371/journal.ppat.1008305 10.1038/nmeth.3898 10.1128/jvi.18.2.586-595.1976 10.3390/genes10020102 10.1038/s41423-019-0307-0 10.1038/s10038-019-0679-0 10.1016/j.molcel.2018.08.011 10.1002/wrna.1576 10.1016/j.molcel.2019.11.007 10.1074/jbc.M115.680389 10.1038/s41590-018-0275-z 10.3390/genes10020117 10.1038/ncb2902 10.1101/gad.319475.118 10.1016/j.cell.2013.10.026 10.1371/journal.ppat.1006919 10.1016/j.cell.2017.05.045 10.1016/j.gpb.2018.04.002 10.1038/s41419-017-0129-x 10.1128/jvi.20.1.45-53.1976 10.1038/nmeth.4577 10.1371/journal.ppat.1006995 10.1016/j.chom.2016.04.002 10.1186/s12943-020-1135-7 10.1186/s12943-019-1109-9 10.1016/j.cell.2020.05.012 10.1016/j.cell.2015.05.014 10.1038/s41590-020-0650-4 10.1038/nchembio.1432 10.1371/journal.ppat.1006427 10.15252/embr.202050128 10.1093/nar/gkz619 10.1128/JVI.02263-16 10.1038/nrm3185 10.1074/jbc.RA118.004215 10.1038/cr.2017.99 10.1038/s41467-020-19787-6 10.1016/j.cell.2017.05.003 10.1073/pnas.1412742111 10.1038/s41467-021-21904-y 10.7554/eLife.47261 10.1016/0006-3002(58)90214-2 10.1038/s41467-019-13317-9 10.1126/science.aax4468 10.1038/cr.2014.3 10.1016/j.molmed.2018.07.010 10.1038/nri3581 10.1038/cr.2017.15 10.1038/s41598-018-32310-8 10.1038/s41564-019-0653-9 10.1073/pnas.1808319115 10.1371/journal.ppat.1007796 10.1016/0092-8674(74)90153-6 10.1038/s41583-019-0244-z 10.1002/wrna.79 10.1038/s41594-019-0200-7 10.1016/j.celrep.2019.02.100 10.1074/jbc.AC119.010078 10.1002/anie.201410647 10.1016/j.cell.2019.06.013 10.1038/nature21022 10.1038/cr.2014.151 10.3389/fnins.2018.00085 10.1128/jvi.23.2.234-239.1977 10.3389/fcell.2019.00116 10.7554/eLife.31311 10.1038/nature11112 10.1038/s41422-020-00465-7 10.1038/s41467-017-02770-z 10.1016/j.cell.2012.05.003 10.1073/pnas.71.10.3971 10.1038/s41589-020-0526-9 10.1074/jbc.RA118.005608 10.1101/817940 10.1261/rna.058206.116 10.1016/j.cell.2020.04.011 10.1002/rmv.1983 10.1038/cr.2017.10 10.1073/pnas.1812536116 10.1038/nchembio.1654 10.1038/s41467-019-12504-y 10.1038/nature15377 10.1039/C5AN01797A 10.1038/nmeth.4110 10.1002/1873-3468.13092 10.1038/s41598-020-63355-3 10.1021/acs.analchem.8b01703 10.1038/nmeth.3453 10.1038/s41556-018-0045-z 10.1038/ncomms12626 10.1126/science.1261417 10.1016/j.chom.2017.08.004 10.1128/JVI.00466-17 10.1016/j.cell.2015.08.011 10.1073/pnas.72.6.2012 10.7554/eLife.15528 10.1016/j.chom.2016.10.002 10.1021/acscentsci.0c01094 10.1042/BSR20140111 10.1016/j.cell.2015.10.012 10.1038/s41564-017-0056-8 10.1093/nar/gky1007 10.1038/s41580-019-0168-5 10.1093/nar/gkx141 10.1016/j.tibtech.2020.06.002 10.1038/nchembio.687 10.1016/j.molcel.2020.04.013 10.1038/nature12730 10.1038/nature14234 10.1128/jvi.20.2.425-435.1976 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 3V. 7U9 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PIMPY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/v13061049 |
DatabaseName | CrossRef ProQuest Central (Corporate) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1999-4915 |
ExternalDocumentID | oai_doaj_org_article_889d80eb1f914a1788efc3ea961a0c6a 10_3390_v13061049 |
GroupedDBID | --- 2WC 3V. 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG AFKRA AFPKN AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK E3Z EBD ESTFP ESX FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR ISR ITC KQ8 LK8 M1P M48 M7P MODMG M~E O5R O5S OK1 PGMZT PIMPY PQQKQ PROAC PSQYO RPM TR2 TUS UKHRP 7U9 7XB 8FK AZQEC COVID DWQXO GNUQQ H94 K9. PQEST PQUKI PRINS RIG 7X8 5PM |
ID | FETCH-LOGICAL-c442t-ba6c37b8897368126ad7217a63e3239745b706295f8ace7c2b2dabe3431ac9923 |
IEDL.DBID | RPM |
ISSN | 1999-4915 |
IngestDate | Tue Oct 22 15:09:46 EDT 2024 Tue Sep 17 21:19:05 EDT 2024 Wed Dec 04 09:05:09 EST 2024 Sat Nov 09 11:11:38 EST 2024 Fri Dec 06 09:05:06 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-ba6c37b8897368126ad7217a63e3239745b706295f8ace7c2b2dabe3431ac9923 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 These authors contributed equally to this work. |
ORCID | 0000-0002-0956-7164 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227502/ |
PMID | 34205979 |
PQID | 2544943094 |
PQPubID | 2032319 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_889d80eb1f914a1788efc3ea961a0c6a pubmedcentral_primary_oai_pubmedcentral_nih_gov_8227502 proquest_miscellaneous_2548396222 proquest_journals_2544943094 crossref_primary_10_3390_v13061049 |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Viruses |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Tirumuru (ref_106) 2016; 5 Sun (ref_61) 2019; 26 Lei (ref_32) 2020; 19 Wetzel (ref_10) 2016; 141 Luo (ref_65) 2014; 111 Lu (ref_105) 2018; 293 ref_135 Meyer (ref_30) 2012; 149 Perry (ref_4) 1974; 1 Ivashkiv (ref_131) 2014; 14 Zhao (ref_76) 2014; 24 Molinie (ref_83) 2016; 13 Dominissini (ref_29) 2012; 485 Netzband (ref_26) 2020; 11 Pendleton (ref_34) 2017; 169 ref_126 Shi (ref_47) 2017; 27 Ernst (ref_133) 2019; 47 Jia (ref_7) 2011; 7 Goodarzi (ref_33) 2015; 162 Antanaviciute (ref_128) 2017; 23 ref_22 Liu (ref_110) 2021; 31 ref_20 Xia (ref_119) 2021; 22 Chen (ref_108) 2020; 548 Flores (ref_15) 2017; 8 Tirumuru (ref_125) 2019; 294 Chen (ref_129) 2011; 12 Winkler (ref_121) 2019; 20 Kim (ref_111) 2020; 78 Noack (ref_79) 2018; 12 Paramasivam (ref_78) 2020; 17 Meyer (ref_85) 2019; 16 Wang (ref_87) 2020; 16 Ma (ref_132) 2019; 15 Wang (ref_51) 2014; 505 Moss (ref_98) 1977; 23 Mikutis (ref_84) 2020; 6 Ping (ref_38) 2014; 24 Linder (ref_39) 2015; 12 Xu (ref_44) 2014; 10 Liao (ref_42) 2018; 16 Kennedy (ref_104) 2016; 19 Du (ref_46) 2016; 7 Roundtree (ref_54) 2017; 6 Huang (ref_58) 2018; 20 Zaccara (ref_2) 2019; 20 Tan (ref_27) 2018; 28 Hashimoto (ref_95) 1976; 20 Molinie (ref_17) 2014; 15 Kim (ref_91) 2020; 181 Wang (ref_36) 2016; 534 Shulman (ref_18) 2020; 21 Zhou (ref_73) 2015; 526 Price (ref_93) 2020; 11 Lavi (ref_94) 1975; 72 Fazi (ref_31) 2019; 7 Bailey (ref_56) 2017; 6 Anders (ref_74) 2018; 1 Lu (ref_113) 2020; 5 Xiao (ref_53) 2016; 61 Rubio (ref_124) 2018; 32 Zheng (ref_8) 2013; 49 Xu (ref_43) 2015; 290 Mauer (ref_40) 2018; 592 Lichinchi (ref_103) 2016; 1 Mao (ref_55) 2019; 10 Kadumuri (ref_23) 2018; 24 Liu (ref_62) 2015; 518 Selberg (ref_136) 2019; 26 Kim (ref_127) 2020; 295 Tan (ref_117) 2018; 3 Krug (ref_96) 1976; 20 Wu (ref_66) 2018; 9 Amos (ref_5) 1958; 29 Liu (ref_35) 2014; 10 Liu (ref_63) 2017; 45 Motorin (ref_9) 2011; 2 Beemon (ref_100) 1977; 113 Qiu (ref_114) 2021; 12 Stoltzfus (ref_99) 1976; 18 Kennedy (ref_25) 2017; 91 Imam (ref_120) 2018; 115 Zhang (ref_123) 2019; 116 Livneh (ref_16) 2020; 21 McIntyre (ref_81) 2020; 10 Chen (ref_82) 2015; 54 Edupuganti (ref_60) 2017; 24 Wei (ref_69) 2018; 71 Dai (ref_45) 2018; 90 Narayan (ref_97) 1987; 7 Garalde (ref_12) 2018; 15 Lesbirel (ref_72) 2018; 8 Baskin (ref_6) 1967; 242 Zhou (ref_50) 2015; 163 Davis (ref_1) 1957; 227 Xue (ref_70) 2019; 10 Meng (ref_130) 2019; 41 He (ref_77) 2019; 18 Roundtree (ref_14) 2017; 169 Mauer (ref_41) 2017; 541 ref_115 Geula (ref_37) 2015; 347 Hsu (ref_57) 2017; 27 ref_118 Courtney (ref_109) 2017; 22 Edelheit (ref_86) 2019; 178 Wang (ref_75) 2014; 16 Manners (ref_80) 2019; 1862 Li (ref_52) 2017; 27 Jonkhout (ref_13) 2017; 23 Wang (ref_49) 2015; 161 Dai (ref_21) 2018; 9 Zaccara (ref_48) 2020; 181 Gulati (ref_71) 2014; 34 Sarnow (ref_24) 2017; 21 Lichinchi (ref_68) 2016; 20 Ye (ref_116) 2017; 91 Zhang (ref_134) 2010; 285 Viehweger (ref_92) 2019; 29 Li (ref_11) 2017; 14 Antanaviciute (ref_59) 2019; 8 Hsu (ref_64) 2019; 294 Gokhale (ref_67) 2016; 20 ref_107 Gokhale (ref_28) 2020; 77 Fustin (ref_19) 2013; 155 Liu (ref_122) 2019; 365 ref_102 Anreiter (ref_89) 2021; 39 Desrosiers (ref_3) 1974; 71 Shu (ref_88) 2020; 16 Xu (ref_90) 2020; 65 Kane (ref_101) 1985; 5 Hao (ref_112) 2019; 47 |
References_xml | – volume: 6 start-page: e26116 year: 2017 ident: ref_56 article-title: The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline publication-title: Elife doi: 10.7554/eLife.26116 contributor: fullname: Bailey – volume: 1 start-page: e201800113 year: 2018 ident: ref_74 article-title: Dynamic m6A methylation facilitates mRNA triaging to stress granules publication-title: Life Sci. Alliance doi: 10.26508/lsa.201800113 contributor: fullname: Anders – volume: 242 start-page: 5447 year: 1967 ident: ref_6 article-title: A Rapid and Specific Assay for Sugar Methylation in Ribonucleic Acid publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)99445-7 contributor: fullname: Baskin – volume: 227 start-page: 907 year: 1957 ident: ref_1 article-title: Ribonucleic acids from yeast which contain a fifth nucleotide publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)70770-9 contributor: fullname: Davis – volume: 285 start-page: 14701 year: 2010 ident: ref_134 article-title: The YTH domain is a novel RNA binding domain publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.104711 contributor: fullname: Zhang – volume: 21 start-page: 661 year: 2017 ident: ref_24 article-title: Making the Mark: The Role of Adenosine Modifications in the Life Cycle of RNA Viruses publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.05.008 contributor: fullname: Sarnow – volume: 1 start-page: 16011 year: 2016 ident: ref_103 article-title: Dynamics of the human and viral m6A RNA methylomes during HIV-1 infection of T cells publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2016.11 contributor: fullname: Lichinchi – volume: 29 start-page: 1545 year: 2019 ident: ref_92 article-title: Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into structural variants and enables modification analysis publication-title: Genome Res. doi: 10.1101/gr.247064.118 contributor: fullname: Viehweger – volume: 295 start-page: 13123 year: 2020 ident: ref_127 article-title: N6-Methyladenosine modification of hepatitis B and C viral RNAs attenuates host innate immunity via RIG-I signaling publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA120.014260 contributor: fullname: Kim – volume: 15 start-page: 707 year: 2014 ident: ref_17 article-title: m6A RNA Modification Controls Cell Fate Transition in Mammalian Embryonic Stem Cells publication-title: Cell Stem. Cell doi: 10.1016/j.stem.2014.09.019 contributor: fullname: Molinie – volume: 8 start-page: 112 year: 2017 ident: ref_15 article-title: Cytosine-5 RNA Methylation Regulates Neural Stem Cell Differentiation and Motility publication-title: Stem. Cell Rep. doi: 10.1016/j.stemcr.2016.11.014 contributor: fullname: Flores – volume: 534 start-page: 575 year: 2016 ident: ref_36 article-title: Structural basis of N6-adenosine methylation by the METTL3–METTL14 complex publication-title: Nature doi: 10.1038/nature18298 contributor: fullname: Wang – volume: 20 start-page: 654 year: 2016 ident: ref_67 article-title: N6-Methyladenosine in Flaviviridae Viral RNA Genomes Regulates Infection publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.09.015 contributor: fullname: Gokhale – volume: 61 start-page: 507 year: 2016 ident: ref_53 article-title: Nuclear m6A Reader YTHDC1 Regulates mRNA Splicing publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.01.012 contributor: fullname: Xiao – volume: 548 start-page: 59 year: 2020 ident: ref_108 article-title: N6-methyladenosine regulates PEDV replication and host gene expression publication-title: Virology doi: 10.1016/j.virol.2020.06.008 contributor: fullname: Chen – volume: 15 start-page: 88 year: 2019 ident: ref_132 article-title: N6-Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-018-0184-3 contributor: fullname: Ma – volume: 1862 start-page: 370 year: 2019 ident: ref_80 article-title: m6A: Widespread regulatory control in virus replication publication-title: Biochim. Et Biophys. Acta (Bba) Gene Regul. Mech. doi: 10.1016/j.bbagrm.2018.10.015 contributor: fullname: Manners – volume: 41 start-page: 8 year: 2019 ident: ref_130 article-title: Genetic variants in m6A modification genes are associated with colorectal cancer risk publication-title: Carcinogenesis contributor: fullname: Meng – volume: 113 start-page: 165 year: 1977 ident: ref_100 article-title: Localization of N6-methyladenosine in the Rous sarcoma virus genome publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(77)90047-X contributor: fullname: Beemon – volume: 49 start-page: 18 year: 2013 ident: ref_8 article-title: ALKBH5 Is a Mammalian RNA Demethylase that Impacts RNA Metabolism and Mouse Fertility publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.10.015 contributor: fullname: Zheng – volume: 24 start-page: 870 year: 2017 ident: ref_60 article-title: N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3462 contributor: fullname: Edupuganti – volume: 23 start-page: 1754 year: 2017 ident: ref_13 article-title: The RNA modification landscape in human disease publication-title: RNA doi: 10.1261/rna.063503.117 contributor: fullname: Jonkhout – volume: 16 start-page: 896 year: 2020 ident: ref_87 article-title: Antibody-free enzyme-assisted chemical approach for detection of N6-methyladenosine publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-020-0525-x contributor: fullname: Wang – volume: 16 start-page: 1275 year: 2019 ident: ref_85 article-title: DART-seq: An antibody-free method for global m6A detection publication-title: Nat. Methods doi: 10.1038/s41592-019-0570-0 contributor: fullname: Meyer – ident: ref_107 doi: 10.1371/journal.ppat.1008305 – volume: 13 start-page: 692 year: 2016 ident: ref_83 article-title: m6A-LAIC-seq reveals the census and complexity of the m6A epitranscriptome publication-title: Nat. Methods doi: 10.1038/nmeth.3898 contributor: fullname: Molinie – volume: 18 start-page: 586 year: 1976 ident: ref_99 article-title: Evidence of methylation of B77 avian sarcoma virus genome RNA subunits publication-title: J. Virol. doi: 10.1128/jvi.18.2.586-595.1976 contributor: fullname: Stoltzfus – ident: ref_20 doi: 10.3390/genes10020102 – volume: 17 start-page: 550 year: 2020 ident: ref_78 article-title: Implications of m6A modification in autoimmune disorders publication-title: Cell. Mol. Immunol. doi: 10.1038/s41423-019-0307-0 contributor: fullname: Paramasivam – volume: 65 start-page: 25 year: 2020 ident: ref_90 article-title: Recent advances in the detection of base modifications using the Nanopore sequencer publication-title: J. Hum. Genet. doi: 10.1038/s10038-019-0679-0 contributor: fullname: Xu – volume: 71 start-page: 973 year: 2018 ident: ref_69 article-title: Differential m6A, m6Am, and m1A Demethylation Mediated by FTO in the Cell Nucleus and Cytoplasm publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.08.011 contributor: fullname: Wei – volume: 11 start-page: e1576 year: 2020 ident: ref_26 article-title: Epitranscriptomic marks: Emerging modulators of RNA virus gene expression publication-title: Wiley Interdiscip. Rev. RNA doi: 10.1002/wrna.1576 contributor: fullname: Netzband – volume: 77 start-page: 542 year: 2020 ident: ref_28 article-title: Altered m6A Modification of Specific Cellular Transcripts Affects Flaviviridae Infection publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.11.007 contributor: fullname: Gokhale – volume: 290 start-page: 24902 year: 2015 ident: ref_43 article-title: Structural Basis for the Discriminative Recognition of N6-Methyladenosine RNA by the Human YT521-B Homology Domain Family of Proteins publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.680389 contributor: fullname: Xu – volume: 20 start-page: 173 year: 2019 ident: ref_121 article-title: m6A modification controls the innate immune response to infection by targeting type I interferons publication-title: Nat. Immunol. doi: 10.1038/s41590-018-0275-z contributor: fullname: Winkler – ident: ref_22 doi: 10.3390/genes10020117 – volume: 16 start-page: 191 year: 2014 ident: ref_75 article-title: N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells publication-title: Nat. Cell Biol. doi: 10.1038/ncb2902 contributor: fullname: Wang – volume: 32 start-page: 1472 year: 2018 ident: ref_124 article-title: RNA m6A modification enzymes shape innate responses to DNA by regulating interferon β publication-title: Genes Dev. doi: 10.1101/gad.319475.118 contributor: fullname: Rubio – volume: 155 start-page: 793 year: 2013 ident: ref_19 article-title: RNA-Methylation-Dependent RNA Processing Controls the Speed of the Circadian Clock publication-title: Cell doi: 10.1016/j.cell.2013.10.026 contributor: fullname: Fustin – ident: ref_115 doi: 10.1371/journal.ppat.1006919 – volume: 169 start-page: 1187 year: 2017 ident: ref_14 article-title: Dynamic RNA Modifications in Gene Expression Regulation publication-title: Cell doi: 10.1016/j.cell.2017.05.045 contributor: fullname: Roundtree – volume: 16 start-page: 99 year: 2018 ident: ref_42 article-title: YTH Domain: A Family of N6-methyladenosine (m6A) Readers publication-title: Genom. Proteom. Bioinform. doi: 10.1016/j.gpb.2018.04.002 contributor: fullname: Liao – volume: 9 start-page: 124 year: 2018 ident: ref_21 article-title: N6-methyladenosine links RNA metabolism to cancer progression publication-title: Cell Death Dis. doi: 10.1038/s41419-017-0129-x contributor: fullname: Dai – volume: 20 start-page: 45 year: 1976 ident: ref_96 article-title: Influenza viral mRNA contains internal N6-methyladenosine and 5’-terminal 7-methylguanosine in cap structures publication-title: J. Virol. doi: 10.1128/jvi.20.1.45-53.1976 contributor: fullname: Krug – volume: 7 start-page: 1572 year: 1987 ident: ref_97 article-title: Unequal distribution of N6-methyladenosine in influenza virus mRNAs publication-title: Mol. Cell Biol. contributor: fullname: Narayan – volume: 15 start-page: 201 year: 2018 ident: ref_12 article-title: Highly parallel direct RNA sequencing on an array of nanopores publication-title: Nat. Methods doi: 10.1038/nmeth.4577 contributor: fullname: Garalde – ident: ref_102 doi: 10.1371/journal.ppat.1006995 – volume: 19 start-page: 675 year: 2016 ident: ref_104 article-title: Posttranscriptional m6A Editing of HIV-1 mRNAs Enhances Viral Gene Expression publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.04.002 contributor: fullname: Kennedy – volume: 19 start-page: 30 year: 2020 ident: ref_32 article-title: Translation and functional roles of circular RNAs in human cancer publication-title: Mol. Cancer doi: 10.1186/s12943-020-1135-7 contributor: fullname: Lei – volume: 18 start-page: 176 year: 2019 ident: ref_77 article-title: Functions of N6-methyladenosine and its role in cancer publication-title: Mol. Cancer doi: 10.1186/s12943-019-1109-9 contributor: fullname: He – volume: 181 start-page: 1582 year: 2020 ident: ref_48 article-title: A Unified Model for the Function of YTHDF Proteins in Regulating m6A-Modified mRNA publication-title: Cell doi: 10.1016/j.cell.2020.05.012 contributor: fullname: Zaccara – volume: 161 start-page: 1388 year: 2015 ident: ref_49 article-title: N6-methyladenosine Modulates Messenger RNA Translation Efficiency publication-title: Cell doi: 10.1016/j.cell.2015.05.014 contributor: fullname: Wang – volume: 21 start-page: 501 year: 2020 ident: ref_18 article-title: The RNA modification N6-methyladenosine as a novel regulator of the immune system publication-title: Nat. Immunol. doi: 10.1038/s41590-020-0650-4 contributor: fullname: Shulman – volume: 10 start-page: 93 year: 2014 ident: ref_35 article-title: A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1432 contributor: fullname: Liu – ident: ref_135 doi: 10.1371/journal.ppat.1006427 – volume: 22 start-page: e50128 year: 2021 ident: ref_119 article-title: N(6)-methyladenosine-binding protein YTHDF1 suppresses EBV replication and promotes EBV RNA decay publication-title: EMBO Rep. doi: 10.15252/embr.202050128 contributor: fullname: Xia – volume: 47 start-page: 7719 year: 2019 ident: ref_133 article-title: The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz619 contributor: fullname: Ernst – volume: 91 start-page: e02263-16 year: 2017 ident: ref_25 article-title: Viral Epitranscriptomics publication-title: J. Virol. doi: 10.1128/JVI.02263-16 contributor: fullname: Kennedy – volume: 12 start-page: 629 year: 2011 ident: ref_129 article-title: Deciphering arginine methylation: Tudor tells the tale publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3185 contributor: fullname: Chen – volume: 293 start-page: 12992 year: 2018 ident: ref_105 article-title: N6-Methyladenosine–binding proteins suppress HIV-1 infectivity and viral production publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.004215 contributor: fullname: Lu – volume: 27 start-page: 1115 year: 2017 ident: ref_57 article-title: Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis publication-title: Cell Res. doi: 10.1038/cr.2017.99 contributor: fullname: Hsu – volume: 11 start-page: 6016 year: 2020 ident: ref_93 article-title: Direct RNA sequencing reveals m6A modifications on adenovirus RNA are necessary for efficient splicing publication-title: Nat. Commun. doi: 10.1038/s41467-020-19787-6 contributor: fullname: Price – volume: 169 start-page: 824 year: 2017 ident: ref_34 article-title: The U6 snRNA m(6)A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention publication-title: Cell doi: 10.1016/j.cell.2017.05.003 contributor: fullname: Pendleton – volume: 111 start-page: 13834 year: 2014 ident: ref_65 article-title: Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1412742111 contributor: fullname: Luo – volume: 12 start-page: 1582 year: 2021 ident: ref_114 article-title: N6-methyladenosine RNA modification suppresses antiviral innate sensing pathways via reshaping double-stranded RNA publication-title: Nat. Commun. doi: 10.1038/s41467-021-21904-y contributor: fullname: Qiu – volume: 8 start-page: e47261 year: 2019 ident: ref_59 article-title: The Tudor SND1 protein is an m6A RNA reader essential for replication of Kaposi’s sarcoma-associated herpesvirus publication-title: Elife doi: 10.7554/eLife.47261 contributor: fullname: Antanaviciute – volume: 29 start-page: 444 year: 1958 ident: ref_5 article-title: 5-Methyl cytosine in the RNA of Escherichia coli publication-title: Biochim. Biophys. Acta doi: 10.1016/0006-3002(58)90214-2 contributor: fullname: Amos – volume: 10 start-page: 5332 year: 2019 ident: ref_55 article-title: m6A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13317-9 contributor: fullname: Mao – volume: 365 start-page: 1171 year: 2019 ident: ref_122 article-title: N6-methyladenosine RNA modification–mediated cellular metabolism rewiring inhibits viral replication publication-title: Science doi: 10.1126/science.aax4468 contributor: fullname: Liu – volume: 24 start-page: 177 year: 2014 ident: ref_38 article-title: Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase publication-title: Cell Res. doi: 10.1038/cr.2014.3 contributor: fullname: Ping – volume: 24 start-page: 886 year: 2018 ident: ref_23 article-title: Epitranscriptomic Code and Its Alterations in Human Disease publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2018.07.010 contributor: fullname: Kadumuri – volume: 14 start-page: 36 year: 2014 ident: ref_131 article-title: Regulation of type I interferon responses publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3581 contributor: fullname: Ivashkiv – volume: 27 start-page: 315 year: 2017 ident: ref_47 article-title: YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA publication-title: Cell Res. doi: 10.1038/cr.2017.15 contributor: fullname: Shi – volume: 8 start-page: 13827 year: 2018 ident: ref_72 article-title: The m6A-methylase complex recruits TREX and regulates mRNA export publication-title: Sci. Rep. doi: 10.1038/s41598-018-32310-8 contributor: fullname: Lesbirel – volume: 5 start-page: 584 year: 2020 ident: ref_113 article-title: N6-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I publication-title: Nat. Microbiol. doi: 10.1038/s41564-019-0653-9 contributor: fullname: Lu – volume: 115 start-page: 8829 year: 2018 ident: ref_120 article-title: N6-methyladenosine modification of hepatitis B virus RNA differentially regulates the viral life cycle publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1808319115 contributor: fullname: Imam – ident: ref_118 doi: 10.1371/journal.ppat.1007796 – volume: 1 start-page: 37 year: 1974 ident: ref_4 article-title: Existence of methylated messenger RNA in mouse L cells publication-title: Cell doi: 10.1016/0092-8674(74)90153-6 contributor: fullname: Perry – volume: 21 start-page: 36 year: 2020 ident: ref_16 article-title: The m6A epitranscriptome: Transcriptome plasticity in brain development and function publication-title: Nat. Rev. Neurosci. doi: 10.1038/s41583-019-0244-z contributor: fullname: Livneh – volume: 2 start-page: 611 year: 2011 ident: ref_9 article-title: RNA nucleotide methylation publication-title: Wires RNA doi: 10.1002/wrna.79 contributor: fullname: Motorin – volume: 26 start-page: 322 year: 2019 ident: ref_61 article-title: RNA structure maps across mammalian cellular compartments publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-019-0200-7 contributor: fullname: Sun – volume: 26 start-page: 3762 year: 2019 ident: ref_136 article-title: Discovery of Small Molecules that Activate RNA Methylation through Cooperative Binding to the METTL3-14-WTAP Complex Active Site publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.02.100 contributor: fullname: Selberg – volume: 294 start-page: 19889 year: 2019 ident: ref_64 article-title: The RNA-binding protein FMRP facilitates the nuclear export of N6-methyladenosine–containing mRNAs publication-title: J. Biol. Chem. doi: 10.1074/jbc.AC119.010078 contributor: fullname: Hsu – volume: 54 start-page: 1587 year: 2015 ident: ref_82 article-title: High-resolution N6-methyladenosine m6A map using photo-crosslinking-assisted m6A sequencing publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201410647 contributor: fullname: Chen – volume: 178 start-page: 731 year: 2019 ident: ref_86 article-title: Deciphering the “m6A Code” via Antibody-Independent Quantitative Profiling publication-title: Cell doi: 10.1016/j.cell.2019.06.013 contributor: fullname: Edelheit – volume: 541 start-page: 371 year: 2017 ident: ref_41 article-title: Reversible methylation of m6Am in the 5’ cap controls mRNA stability publication-title: Nature doi: 10.1038/nature21022 contributor: fullname: Mauer – volume: 24 start-page: 1403 year: 2014 ident: ref_76 article-title: FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis publication-title: Cell Res. doi: 10.1038/cr.2014.151 contributor: fullname: Zhao – volume: 12 start-page: 85 year: 2018 ident: ref_79 article-title: Epitranscriptomics: A New Regulatory Mechanism of Brain Development and Function publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00085 contributor: fullname: Noack – volume: 23 start-page: 234 year: 1977 ident: ref_98 article-title: 5′-Terminal and internal methylated nucleosides in herpes simplex virus type 1 mRNA publication-title: J. Virol. doi: 10.1128/jvi.23.2.234-239.1977 contributor: fullname: Moss – volume: 7 start-page: 116 year: 2019 ident: ref_31 article-title: Interplay Between N6-Methyladenosine (m6A) and Non-coding RNAs in Cell Development and Cancer publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2019.00116 contributor: fullname: Fazi – volume: 6 start-page: e31311 year: 2017 ident: ref_54 article-title: YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs publication-title: Elife doi: 10.7554/eLife.31311 contributor: fullname: Roundtree – volume: 485 start-page: 201 year: 2012 ident: ref_29 article-title: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq publication-title: Nature doi: 10.1038/nature11112 contributor: fullname: Dominissini – volume: 31 start-page: 404 year: 2021 ident: ref_110 article-title: The m6A methylome of SARS-CoV-2 in host cells publication-title: Cell Res. doi: 10.1038/s41422-020-00465-7 contributor: fullname: Liu – volume: 9 start-page: 420 year: 2018 ident: ref_66 article-title: Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02770-z contributor: fullname: Wu – volume: 149 start-page: 1635 year: 2012 ident: ref_30 article-title: Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons publication-title: Cell doi: 10.1016/j.cell.2012.05.003 contributor: fullname: Meyer – volume: 71 start-page: 3971 year: 1974 ident: ref_3 article-title: Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.71.10.3971 contributor: fullname: Desrosiers – volume: 16 start-page: 887 year: 2020 ident: ref_88 article-title: A metabolic labeling method detects m6A transcriptome-wide at single base resolution publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-020-0526-9 contributor: fullname: Shu – volume: 294 start-page: 3249 year: 2019 ident: ref_125 article-title: HIV-1 envelope proteins up-regulate N (6)-methyladenosine levels of cellular RNA independently of viral replication publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.005608 contributor: fullname: Tirumuru – ident: ref_126 doi: 10.1101/817940 – volume: 23 start-page: 1493 year: 2017 ident: ref_128 article-title: m6aViewer: Software for the detection, analysis, and visualization of N6-methyladenosine peaks from m6A-seq/ME-RIP sequencing data publication-title: RNA doi: 10.1261/rna.058206.116 contributor: fullname: Antanaviciute – volume: 181 start-page: 914 year: 2020 ident: ref_91 article-title: The Architecture of SARS-CoV-2 Transcriptome publication-title: Cell doi: 10.1016/j.cell.2020.04.011 contributor: fullname: Kim – volume: 28 start-page: e1983 year: 2018 ident: ref_27 article-title: RNA epitranscriptomics: Regulation of infection of RNA and DNA viruses by N(6) -methyladenosine (m(6) A) publication-title: Rev. Med. Virol. doi: 10.1002/rmv.1983 contributor: fullname: Tan – volume: 27 start-page: 444 year: 2017 ident: ref_52 article-title: Cytoplasmic m6A reader YTHDF3 promotes mRNA translation publication-title: Cell Res. doi: 10.1038/cr.2017.10 contributor: fullname: Li – volume: 116 start-page: 976 year: 2019 ident: ref_123 article-title: RNA-binding protein YTHDF3 suppresses interferon-dependent antiviral responses by promoting FOXO3 translation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1812536116 contributor: fullname: Zhang – volume: 10 start-page: 927 year: 2014 ident: ref_44 article-title: Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1654 contributor: fullname: Xu – volume: 10 start-page: 4595 year: 2019 ident: ref_70 article-title: Viral N6-methyladenosine upregulates replication and pathogenesis of human respiratory syncytial virus publication-title: Nat. Commun. doi: 10.1038/s41467-019-12504-y contributor: fullname: Xue – volume: 526 start-page: 591 year: 2015 ident: ref_73 article-title: Dynamic m6A mRNA methylation directs translational control of heat shock response publication-title: Nature doi: 10.1038/nature15377 contributor: fullname: Zhou – volume: 141 start-page: 16 year: 2016 ident: ref_10 article-title: Mass spectrometry of modified RNAs: Recent developments publication-title: Analyst doi: 10.1039/C5AN01797A contributor: fullname: Wetzel – volume: 14 start-page: 23 year: 2017 ident: ref_11 article-title: Epitranscriptome sequencing technologies: Decoding RNA modifications publication-title: Nat. Methods doi: 10.1038/nmeth.4110 contributor: fullname: Li – volume: 592 start-page: 2012 year: 2018 ident: ref_40 article-title: FTO, m6Am, and the hypothesis of reversible epitranscriptomic mRNA modifications publication-title: FEBS Lett. doi: 10.1002/1873-3468.13092 contributor: fullname: Mauer – volume: 10 start-page: 6590 year: 2020 ident: ref_81 article-title: Limits in the detection of m6A changes using MeRIP/m6A-seq publication-title: Sci. Rep. doi: 10.1038/s41598-020-63355-3 contributor: fullname: McIntyre – volume: 5 start-page: 2298 year: 1985 ident: ref_101 article-title: Precise localization of m6A in Rous sarcoma virus RNA reveals clustering of methylation sites: Implications for RNA processing publication-title: Mol. Cell Biol. contributor: fullname: Kane – volume: 90 start-page: 6380 year: 2018 ident: ref_45 article-title: Identification of YTH Domain-Containing Proteins as the Readers for N1-Methyladenosine in RNA publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b01703 contributor: fullname: Dai – volume: 12 start-page: 767 year: 2015 ident: ref_39 article-title: Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome publication-title: Nat. Methods doi: 10.1038/nmeth.3453 contributor: fullname: Linder – volume: 20 start-page: 285 year: 2018 ident: ref_58 article-title: Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0045-z contributor: fullname: Huang – volume: 7 start-page: 12626 year: 2016 ident: ref_46 article-title: YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex publication-title: Nat. Commun. doi: 10.1038/ncomms12626 contributor: fullname: Du – volume: 347 start-page: 1002 year: 2015 ident: ref_37 article-title: m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation publication-title: Science doi: 10.1126/science.1261417 contributor: fullname: Geula – volume: 22 start-page: 377 year: 2017 ident: ref_109 article-title: Epitranscriptomic Enhancement of Influenza A Virus Gene Expression and Replication publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.08.004 contributor: fullname: Courtney – volume: 91 start-page: e00466-17 year: 2017 ident: ref_116 article-title: Kaposi’s Sarcoma-Associated Herpesvirus Utilizes and Manipulates RNA N6-Adenosine Methylation To Promote Lytic Replication publication-title: J. Virol. doi: 10.1128/JVI.00466-17 contributor: fullname: Ye – volume: 162 start-page: 1299 year: 2015 ident: ref_33 article-title: HNRNPA2B1 Is a Mediator of m6A-Dependent Nuclear RNA Processing Events publication-title: Cell doi: 10.1016/j.cell.2015.08.011 contributor: fullname: Goodarzi – volume: 72 start-page: 2012 year: 1975 ident: ref_94 article-title: Methylated simian virus 40-specific RNA from nuclei and cytoplasm of infected BSC-1 cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.72.6.2012 contributor: fullname: Lavi – volume: 5 start-page: e15528 year: 2016 ident: ref_106 article-title: N6-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression publication-title: Elife doi: 10.7554/eLife.15528 contributor: fullname: Tirumuru – volume: 20 start-page: 666 year: 2016 ident: ref_68 article-title: Dynamics of Human and Viral RNA Methylation during Zika Virus Infection publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.10.002 contributor: fullname: Lichinchi – volume: 6 start-page: 2196 year: 2020 ident: ref_84 article-title: meCLICK-Seq, a Substrate-Hijacking and RNA Degradation Strategy for the Study of RNA Methylation publication-title: ACS Cent Sci. doi: 10.1021/acscentsci.0c01094 contributor: fullname: Mikutis – volume: 34 start-page: e00144 year: 2014 ident: ref_71 article-title: Fat mass and obesity-related (FTO) shuttles between the nucleus and cytoplasm publication-title: Biosci. Rep. doi: 10.1042/BSR20140111 contributor: fullname: Gulati – volume: 163 start-page: 999 year: 2015 ident: ref_50 article-title: 5′ UTR m6A Promotes Cap-Independent Translation publication-title: Cell doi: 10.1016/j.cell.2015.10.012 contributor: fullname: Zhou – volume: 3 start-page: 108 year: 2018 ident: ref_117 article-title: Viral and cellular N6-methyladenosine and N6,2′-O-dimethyladenosine epitranscriptomes in the KSHV life cycle publication-title: Nat. Microbiol. doi: 10.1038/s41564-017-0056-8 contributor: fullname: Tan – volume: 47 start-page: 362 year: 2019 ident: ref_112 article-title: N6-methyladenosine modification and METTL3 modulate enterovirus 71 replication publication-title: Nucleic. Acids Res. doi: 10.1093/nar/gky1007 contributor: fullname: Hao – volume: 20 start-page: 608 year: 2019 ident: ref_2 article-title: Reading, writing and erasing mRNA methylation publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0168-5 contributor: fullname: Zaccara – volume: 45 start-page: 6051 year: 2017 ident: ref_63 article-title: N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx141 contributor: fullname: Liu – volume: 39 start-page: 72 year: 2021 ident: ref_89 article-title: New Twists in Detecting mRNA Modification Dynamics publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2020.06.002 contributor: fullname: Anreiter – volume: 7 start-page: 885 year: 2011 ident: ref_7 article-title: N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.687 contributor: fullname: Jia – volume: 78 start-page: 624 year: 2020 ident: ref_111 article-title: Discovery of Widespread Host Protein Interactions with the Pre-replicated Genome of CHIKV Using VIR-CLASP publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.04.013 contributor: fullname: Kim – volume: 505 start-page: 117 year: 2014 ident: ref_51 article-title: N6-methyladenosine-dependent regulation of messenger RNA stability publication-title: Nature doi: 10.1038/nature12730 contributor: fullname: Wang – volume: 518 start-page: 560 year: 2015 ident: ref_62 article-title: N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions publication-title: Nature doi: 10.1038/nature14234 contributor: fullname: Liu – volume: 20 start-page: 425 year: 1976 ident: ref_95 article-title: Multiple methylated cap sequences in adenovirus type 2 early mRNA publication-title: J. Virol. doi: 10.1128/jvi.20.2.425-435.1976 contributor: fullname: Hashimoto |
SSID | ssj0066907 |
Score | 2.4644635 |
SecondaryResourceType | review_article |
Snippet | There are over 100 different chemical RNA modifications, collectively known as the epitranscriptome. N6-methyladenosine (m6A) is the most commonly found... There are over 100 different chemical RNA modifications, collectively known as the epitranscriptome. N 6 -methyladenosine (m 6 A) is the most commonly found... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 1049 |
SubjectTerms | DNA viruses epitranscriptomics Genomes m6A Mass spectrometry mRNA stability N6-methyladenosine Nuclear transport Proteins Review RNA modification RNA viruses Roles Scientific imaging Stem cells Transfer RNA viral infection Viral infections |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwGA0iCF7En1idEsVrWZukSettysYQ9ORkt5Jfwx3WjtkJ_vd-Sbqxnrx4bUpI3pd-eS8N70PoITM5Z7ZI4lRQECgpUbHktohtrhnQe5IaXyXi9Y2PJ-xlmk13Sn25O2HBHjgA18_zwuQJZJRZkTKZgmKzM02tLHgqE80DNUrIRkyFHMyd5gs-QhREff8bMjXwBGeYubP7eJP-DrPs3ovc2WhGx-ioZYh4EEZ2gvZsdYoOQs3InzNERqt6gQe4qfGCDx4xxBm7kyVXbAh_zKFDPFzOG7cF-YRQL-w5moyG78_juC18EGvGSBMryTUVCqYuqPMH49KAUBOSU0sJEAiWKZFwUmSzXGorNFHESGUpkAGpAWB6gfarurKXCGcMBAHPhUlMwpQ2Ss0sNaBbOHRPhIzQ_QaQchn8LUrQBQ61cotahJ4cVNsXnCW1fwCBKttAlX8FKkK9DdBl-518lc4gzRnAFyxCd9tmWOHut4WsbL327wCL40BkIiQ6AeoMqNtSzT-9VzbwH-BE5Oo_ZnCNDom70eLPYHpov1mt7Q1Qkkbd-tX3C2VD3kg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pa9swFH60CYNeStdu1Gs2tNGrqS3JkrzLSEdCGSyM0o7ejH55zSF2ljiF_vd9cpysvuxqCUm8J7_3fZL4HsBl5pTgPk_iVDIkKCk1sRY-j72yHOE9TV1bJeLnTNzc8x8P2UN34LbunlXuYmIbqF1twxn5VZDSClLhOf-2_BuHqlHhdrUroXEIQ5oypQYwvJ7Mft3uYrEI3G-rJ8SQ3F89YcRGvBCEM19loVasv4cw--8jXyWc6Qkcd0iRjLeufQsHvjqFN9vakc9nQKerekHGpKnJQoy_EvQ3CSdMoegQ-T3HAclkOW9CKmoDQ73w7-B-Orn7fhN3BRBiyzltYqOFZdIolUsWdMKEdkjYpBbMM4pAgmdGJoLmWam09dJSQ502niEo0BYNzd7DoKorfw4k40gMhJIucQk31hlTeuaQvwgcnkodwZedQYrlVueiQH4QrFbsrRbBdTDVvkOQpm4_1Ks_RbfTC1ytUwmmgDJPuU6RYvvSMq9zkerECpxptDN00f0v6-KfdyP4vG_GnR6uL3Tl603bB9GcQEATgew5qLegfks1f2w1sxEHITaiH_4_-QUc0fBmpT1lGcGgWW38RwQdjfnU7awXWGjWrg priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwGP3QieCLeMV5I4qv1TZJk1YQmbIxBH1y4lvJbTpw7Zyd6L_3S3fBgo--NiFNT9J85yThfABnsU0Ed2kYRJKhQImoDpRwaeASw5He08hWWSLuH0S3x--e4-clmOfYnAH48ae08_mkeuO386_372v84a-84kTJfvGJ6zCyAJ4uwwrFgOhvdt3zxWGC8AJwaipUr14LRZVjf41m1i9J_oo6nQ1Yn9FF0pqO7yYsuXwLVqcJJL-3gXbGxZC0SFmQoWhdEhx04reZfOYh8jTABkl7NCh9PKpWh2LodqDXaT_edoNZFoTAcE7LQCthmNRJkkrmzcKEsqjapBLMMYpsgsdahoKmcT9RxklDNbVKO4ZAKINos11o5EXu9oDEHNWBSKQNbci1sVr3HbMoYgQ2T6VqwukckGw0NbvIUCR41LIFak248VAtKnh_6upBMX7JZtM9w97aJMQ40E8jriLU2a5vmFOpiFRoBL7pcA50Nh_zzLuleTf4lDfhZFGM092fYajcFZOqDlI6gaymCbI2QLUO1UvywWtlnI1kCAkS3f-PLziANeqvt1QbMofQKMcTd4T8pNTH1ez7ATEd4_U priority: 102 providerName: Scholars Portal |
Title | From A to m6A: The Emerging Viral Epitranscriptome |
URI | https://www.proquest.com/docview/2544943094 https://search.proquest.com/docview/2548396222 https://pubmed.ncbi.nlm.nih.gov/PMC8227502 https://doaj.org/article/889d80eb1f914a1788efc3ea961a0c6a |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFL20HYO9jH2ybG3Qxl7d2JIs2XtLs6TdIF0Za8mb0Ve6wGyHzB3s3_dKtkP92hcZLNkWV9e658jXRwCfU5sJ7vI4SiRDgpJQHSnh8shlhiO8p4kNu0QsL8XFNf--SlcHkPb_woSkfaM3p9Wf8rTa_A65ldvSTPo8scnVcoZBDQMdnRzCIYbfnqK306_wdK-VEGLI5yf_cJJGiMC9PCjjFNGEz9p6EIOCVP8AXw6zIx-Em8ULeN7hRDJt-_MSDlz1Cp62O0f-fw10satLMiVNTUox_UJwtIlfX_JbDpGbDd6QzLebxgeiMC3UpXsD14v5r9lF1G1_EBnOaRNpJQyTOstyybxKmFAW6ZpUgjlGEUbwVMtY0DxdZ8o4aaimVmnHEBIog2Zmb-Goqiv3DkjKkRaITNrYxlwbq_XaMYvsReDtqVQj-NQbpNi2KhcFsgNvwGJvwBGceVPtG3hh6nCi3t0W3fAU2FubxRgA1nnCVYIE260NcyoXiYqNwCcd94Yuurflb-Fl0rwMfM5H8HFfjX7uP16oytV3oQ1iOYFwZgRyMECDDg1r0IGCYnbnMO8ffeUHeEZ9MktYfjmGo2Z3504QjTR6jD64kmN4cja_vPqJx9mPm29fx4HbY3m-SrBc8mwcvPQeAavlDg |
link.rule.ids | 230,314,727,780,784,864,885,2102,2221,12056,21388,24318,27924,27925,31719,31720,33744,33745,38516,43310,43805,43895,53791,53793,73745,74302,74412 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED-xomm8oH1q5WPzpr1GJLZjJ7ygMrUqG1TTBBNvkb86-tCklIDEf89dmnbkZa-xZVt3zt3vZ1u_A_iW-kzJkMdRogUSlITbyKiQRyFzEuE9T3xTJeJiosZX8sd1et0euN21zyrXMbEJ1L5ydEZ-RFJaJBWey5PFbURVo-h2tS2h8QK2STk97cH26XDy6_c6Fivifis9IYHk_ugBIzbiBRLOfJaFGrH-DsLsvo98lnBGr2G3RYpssHLtG9gK5Vt4uaod-fgO-GhZzdmA1RWbq8ExQ38zOmGiokPszwwHZMPFrKZU1ASGah7ew9VoePl9HLUFECInJa8ja5QT2mZZrgXphCnjkbBpo0QQHIGETK2OFc_TaWZc0I5b7o0NAkGBcWho8QF6ZVWGj8BSicRAZdrHPpbWeWunQXjkLwqH59r04evaIMVipXNRID8gqxUbq_XhlEy16UDS1M2Havm3aHd6gav1WYwpYJon0iRIscPUiWBylZjYKZzpYG3oov1f7op_3u3Dl00z7nS6vjBlqO6bPojmFAKaPuiOgzoL6raUs5tGMxtxEGIjvvf_yT_Dq_HlxXlxfjb5uQ87nN6vNCcuB9Crl_fhEAFIbT-1u-wJg9LZlg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED-NoqG9oH2AKDDmTXuNmtiOnfAyFWjFYKvQNCbeIn9l60OTrg1I_Pc7p25HXniNLdu6u9z9zj79DuBzajPBXR5HiWSYoCRUR0q4PHKZ4QjvaWLbLhHfJ-Lyll_dpXeh_mkZyirXPrF11LY2_o584Km0PFV4zgdlKIu4uRh_mf-NfAcp_9Ia2mlswTZGxZj2YPtsNLn5sfbLwueBK24hhon-4AG9N2IHT6L5JCK1xP0dtNmtlXwSfMavYTegRjJcqfkNvHDVW3i56iP5-A7oeFHPyJA0NZmJ4SlB3RN_2-QbEJFfU1yQjObTxoel1knUM7cHt-PRz_PLKDRDiAzntIm0EoZJnWW5ZJ4zTCiLyZtUgjlGEVTwVMtY0DwtM2WcNFRTq7RjCBCUQaGzfehVdeUOgKQckwSRSRvbmGtjtS4ds5jLCFyeStWHT2uBFPMV50WBuYKXWrGRWh_OvKg2EzxNdfuhXvwugtUXeFqbxRgOyjzhKsF025WGOZWLRMVG4E7Ha0EX4d9ZFv813YePm2G0ev-UoSpX37dzENkJBDd9kB0FdQ7UHammf1r-bMREiJPo4fObf4AdNLDi29fJ9RG8or6Upb18OYZes7h37xGLNPokGNk_gQvdww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+A+to+m6A%3A+The+Emerging+Viral+Epitranscriptome&rft.jtitle=Viruses&rft.au=Belinda+Baquero-Perez&rft.au=Daryl+Geers&rft.au=Juana+D%C3%ADez&rft.date=2021-06-01&rft.pub=MDPI+AG&rft.eissn=1999-4915&rft.volume=13&rft.issue=6&rft.spage=1049&rft_id=info:doi/10.3390%2Fv13061049&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_889d80eb1f914a1788efc3ea961a0c6a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4915&client=summon |