Single-Strand Conformation Polymorphism Fingerprint Method for Dictyostelids

Dictyostelid social amoebae are a highly diverse group of eukaryotic soil microbes that are valuable resources for biological research. Genetic diversity study of these organisms solely relies on molecular phylogenetics of the SSU rDNA gene, which is not ideal for large-scale genetic diversity study...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 12; p. 708685
Main Authors Pasookhush, Phongthana, Usmani, Asmatullah, Suwannahong, Kowit, Palittapongarnpim, Prasit, Rukseree, Kamolchanok, Ariyachaokun, Kanchiyaphat, Buates, Sureemas, Siripattanapipong, Suradej, Ajawatanawong, Pravech
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 27.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Dictyostelid social amoebae are a highly diverse group of eukaryotic soil microbes that are valuable resources for biological research. Genetic diversity study of these organisms solely relies on molecular phylogenetics of the SSU rDNA gene, which is not ideal for large-scale genetic diversity study. Here, we designed a set of PCR–single-strand conformation polymorphism (SSCP) primers and optimized the SSCP fingerprint method for the screening of dictyostelids. The optimized SSCP condition required gel purification of the SSCP amplicons followed by electrophoresis using a 9% polyacrylamide gel under 4°C. We also tested the optimized SSCP procedure with 73 Thai isolates of dictyostelid that had the SSU rDNA gene sequences published. The SSCP fingerprint patterns were related to the genus-level taxonomy of dictyostelids, but the fingerprint dendrogram did not reflect the deep phylogeny. This method is rapid, cost-effective, and suitable for large-scale sample screening as compared with the phylogenetic analysis of the SSU rDNA gene sequences.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Sandra Baldauf, Uppsala University, Sweden; Christina Schilde, University of Dundee, United Kingdom
Edited by: Pauline Schaap, University of Dundee, United Kingdom
This article was submitted to Evolutionary and Genomic Microbiology, a section of the journal Frontiers in Microbiology
ISSN:1664-302X
1664-302X
DOI:10.3389/fmicb.2021.708685