Role of Aβ in Alzheimer’s-related synaptic dysfunction
Synaptic dysfunction is closely related to Alzheimer’s disease (AD) which is also recognized as synaptic disorder. β-amyloid (Aβ) is one of the main pathogenic factors in AD, which disrupts synaptic plasticity and mediates the synaptic toxicity through different mechanisms. Aβ disrupts glutamate rec...
Saved in:
Published in | Frontiers in cell and developmental biology Vol. 10; p. 964075 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
26.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Synaptic dysfunction is closely related to Alzheimer’s disease (AD) which is also recognized as synaptic disorder. β-amyloid (Aβ) is one of the main pathogenic factors in AD, which disrupts synaptic plasticity and mediates the synaptic toxicity through different mechanisms. Aβ disrupts glutamate receptors, such as NMDA and AMPA receptors, which mediates calcium dyshomeostasis and damages synapse plasticity characterized by long-term potentiation (LTP) suppression and long-term depression (LTD) enhancement. As Aβ stimulates and Ca
2+
influx, microglial cells and astrocyte can be activated and release cytokines, which reduces glutamate uptake and further impair synapse function. Besides, extracellular glutamate accumulation induced by Aβ mediates synapse toxicity resulting from reduced glutamate receptors and glutamate spillovers. Aβ also mediates synaptic dysfunction by acting on various signaling pathways and molecular targets, disrupting mitochondria and energy metabolism. In addition, Aβ overdeposition aggravates the toxic damage of hyperphosphorylated tau to synapses. Synaptic dysfunction plays a critical role in cognitive impairment of AD. The review addresses the possible mechanisms by which Aβ mediates AD-related synaptic impairment from distant perspectives. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 Reviewed by: Nibaldo C. Inestrosa, Pontificia Universidad Católica de Chile, Chile Balaji Krishnan, University of Texas Medical Branch at Galveston, United States P. Hemachandra Reddy, Texas Tech University Health Sciences Center, United States Edited by: Yuzuru Imai, Juntendo University, Japan This article was submitted to Molecular and Cellular Pathology, a section of the journal Frontiers in Cell and Developmental Biology |
ISSN: | 2296-634X 2296-634X |
DOI: | 10.3389/fcell.2022.964075 |