Efficient Bioconversion of High Concentration Phytosterol Microdispersion to 4-Androstene-3,17-Dione (AD) by Mycobacterium sp. B3805

Low solubility of sterols in aqueous media limits efficient steroid production mediated by biocatalytic microorganisms such as Mycobacterium . Sterol emulsion technologies have been developed with low success rates, largely due to the complexity of generating stable and bioavailable particles. In th...

Full description

Saved in:
Bibliographic Details
Published inApplied biochemistry and biotechnology Vol. 185; no. 2; pp. 494 - 506
Main Authors Mancilla, Rodrigo A., Little, Cedric, Amoroso, Alejandro
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Low solubility of sterols in aqueous media limits efficient steroid production mediated by biocatalytic microorganisms such as Mycobacterium . Sterol emulsion technologies have been developed with low success rates, largely due to the complexity of generating stable and bioavailable particles. In this study, several aqueous dispersions of sterols in-water of different particle sizes were bioconverted to 4-androstene-3,17-dione (AD) in a solvent-free environment, using a classic microorganism Mycobacterium sp. B3805 as a model system. According to our results, the high concentration (20 g/L) phytosterol dispersions with the smallest particle size tested (370 nm) achieved up to 54% (7.4 g/L) AD production yield in 11 days. Moreover, the use of 0.1 biomass/sterols ratio in a complex bioconversion media containing yeast extract, and a 1:1 glucose/microdispersion ratio in the presence of the surfactant DK-Ester P-160 (HLB16), allowed homogenization and increased microdispersion stability, thus achieving the best results using emulsion technologies to date.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0273-2289
1559-0291
1559-0291
DOI:10.1007/s12010-017-2665-3