Leaf formononetin content of Trifolium subterraneum increases in response to waterlogging but its proportion of total isoflavones is little changed

The isoflavone formononetin (F) impacts livestock fertility and cultivars of the pasture legume Trifolium subterraneum L. (subclover) have been selected for F levels ≤0.2% of leaf dry weight. However, the impact of waterlogging (WL) on isoflavones is little studied. We investigated the response of i...

Full description

Saved in:
Bibliographic Details
Published inFunctional Plant Biology Vol. 50; no. 6; pp. 507 - 518
Main Authors Enkhbat, Gereltsetseg, Foster, Kevin J., Nichols, Phillip G. H., Erskine, William, Inukai, Yoshiaki, Ryan, Megan H.
Format Journal Article
LanguageEnglish
Published Australia CSIRO Publishing 05.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The isoflavone formononetin (F) impacts livestock fertility and cultivars of the pasture legume Trifolium subterraneum L. (subclover) have been selected for F levels ≤0.2% of leaf dry weight. However, the impact of waterlogging (WL) on isoflavones is little studied. We investigated the response of isoflavones, biochanin A (BA), genistein (G) and F, to WL for: (1) Yarloop (high F) and eight low F cultivars each from subspecies subterraneum, brachycalycinum and yanninicum (Experiment 1); and (2) four cultivars and 12 ecotypes of ssp. yanninicum (Experiment 2). WL impacted F: estimated means increased from 0.19% (control) to 0.31% (WL) in Experiment 1 and from 0.61% to 0.97% in Experiment 2. Isoflavones under WL were highly heritable, particularly F (H2 = 95%). The proportions of BA, G and F were little changed by WL, with strong positive correlations between free-drained and waterlogged treatments. Isoflavone contents were not related to WL tolerance, as assessed by shoot relative growth rate. In conclusion, isoflavones varied among genotypes and increased with WL, but the proportion of individual isoflavones in each genotype was stable. High F under WL was unrelated with genotype tolerance to WL. Instead, it was a consequence of inherently high F for that particular genotype.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1445-4408
1445-4416
1445-4416
DOI:10.1071/fp22151