Impact of Olive Saplings and Organic Amendments on Soil Microbial Communities and Effects of Mineral Fertilization

Plant communities and fertilization may have an impact on soil microbiome. Most commercial olive trees are minerally fertilized, while this practice is being replaced by the use of organic amendments. Organic amendments can both fertilize and promote plant growth-promoting organisms. Our aims were (...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 12; p. 653027
Main Authors Llimós, Miquel, Segarra, Guillem, Sancho-Adamson, Marc, Trillas, M. Isabel, Romanyà, Joan
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Plant communities and fertilization may have an impact on soil microbiome. Most commercial olive trees are minerally fertilized, while this practice is being replaced by the use of organic amendments. Organic amendments can both fertilize and promote plant growth-promoting organisms. Our aims were (i) to describe the changes in soil bacterial and fungal communities induced by the presence of young olive trees and their interaction with organic amendments and (ii) to compare the effects of mineral and organic fertilization. We set up two parallel experiments in pots using a previously homogenized soil collected from a commercial olive orchard: in the first one, we grew olive saplings in unamended and organically amended soils with two distinct composts and compared these two soils incubated without a plant, while in the second experiment, we comparatively tested the effects of organic and mineral fertilization. OTUs and the relative abundances of bacterial and fungal genera and phyla were analyzed by 16S rRNA and ITS1 gene amplicon using high-throughput sequencing. Basal respiration and substrate-induced respiration were measured by MicroResp TM . The effects of the different treatments were analyzed in all phyla and in the 100 most abundant genera. The presence of olive saplings increased substrate-induced respiration and bacterial and fungal richness and diversity. Organic amendments greatly affected both bacterial and fungal phyla and increased bacterial richness while not affecting fungal richness. Mineral fertilization increased the relative abundance of the less metabolically active bacterial phyla (Actinobacteria and Firmicutes), while it reduced the most metabolically active phylum, Bacteroidetes. Mineral fertilization increased the relative abundance of three N 2 -fixing Actinobacteria genera, while organic fertilization only increased one genus of Proteobacteria. In organically and minerally fertilized soils, high basal respiration rates were associated with low fungal diversity. Basidiomycota and Chytridiomycota relative abundances positively correlated with basal respiration and substrate-induced respiration, while Ascomycota correlated negatively. Indeed, the Ascomycota phyla comprised most of the fungal genera decreased by organic amendments. The symbiotrophic phylum Glomeromycota did not correlate with any of the C sources. The relative abundance of this phylum was promoted by the presence of plants but decreased when amending soils with composts.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Terrestrial Microbiology, a section of the journal Frontiers in Microbiology
Edited by: Steffen Kolb, Leibniz Center for Agricultural Landscape Research (ZALF), Germany
Reviewed by: Eeva Terhonen, University of Göttingen, Germany; Blanca B. Landa, Institute for Sustainable Agriculture, Spanish National Research Council, Spain
ISSN:1664-302X
1664-302X
DOI:10.3389/fmicb.2021.653027