Thermal hazard studies on aqueous ethylene oxide solution using DSC, VSP2, and the pressure-proof TAM IV
Ethylene oxide is a most versatile and critical raw chemical and intermediate. However, the strained ring of ethylene oxide is liable to be cleaved, potentially leading to industrial disasters at high temperatures, such as severe explosions, fires, and toxic releases. In this study, nonisothermal, a...
Saved in:
Published in | Journal of thermal analysis and calorimetry Vol. 133; no. 1; pp. 763 - 771 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.07.2018
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Ethylene oxide is a most versatile and critical raw chemical and intermediate. However, the strained ring of ethylene oxide is liable to be cleaved, potentially leading to industrial disasters at high temperatures, such as severe explosions, fires, and toxic releases. In this study, nonisothermal, adiabatic, and isothermal tests were performed to determine the inherent properties of aqueous ethylene oxide solution (AEOS) with regard to its safety. Differential scanning calorimetry and vent sizing package 2 were used to investigate its thermal decomposition and pseudo-adiabatic runaway reaction, respectively. Isothermally exothermic behavior was detected by using the thermal activity monitor IV. Kinetic equations were applied to calculate the apparent activation energy of AEOS (at conversion degrees of 10, 11, 12, 13,…, and 90%), with its value in the range 59.6–85.0 kJ mol
−1
. The Arrhenius method was also used to ascertain the frequency factor. As the conversion degree increased, the apparent activation energy and frequency factor gradually decreased. The flash point of AEOS was tested to determine its fire and explosion hazard potential. From the perspective of proactive loss prevention, these results are salient for the safer thermal handling of AEOS. |
---|---|
ISSN: | 1388-6150 1588-2926 |
DOI: | 10.1007/s10973-018-7279-7 |