Structural Requirements for Signal-induced Target Binding of FADD Determined by Functional Reconstitution of FADD Deficiency
FADD is a key adaptor modulating several signaling pathways such as apoptosis induced by Fas (CD95) and tumor necrosis factor receptor 1, and cell proliferation induced by mitogens. Whereas mutations in Fas disrupt its binding to FADD and cause autoimmune lymphoproliferative (lpr) syndromes, a FADD...
Saved in:
Published in | The Journal of biological chemistry Vol. 280; no. 36; pp. 31360 - 31367 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
09.09.2005
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | FADD is a key adaptor modulating several signaling pathways such as apoptosis induced by Fas (CD95) and tumor necrosis factor receptor 1, and cell proliferation induced by mitogens. Whereas mutations in Fas disrupt its binding to FADD and cause autoimmune lymphoproliferative (lpr) syndromes, a FADD deficiency blocks embryonic development in mice. To delineate the multifunction of FADD in vivo, we performed functional reconstitution analysis by introducing wild type and mutant FADD into FADD–/– cells or FADD–/– mice lacking the endogenous FADD. An lpr-like FADD mutant, V121N, was reported previously as being defective in Fas binding in vitro. However, we found that in mice V121N can bind to Fas and is functional in signaling apoptosis. Unexpectedly, this lpr-like mutant FADD failed to support mouse development, indicating that the death domain of FADD has an additional function required for embryogenesis, which is independent of that required for receptor-induced apoptosis. Further mutagenesis was targeted at charged residues in the FADD death domain, presumably mediating electrostatic interactions with Fas. We showed that the target binding and apoptosis signaling functions of FADD were not affected when mutations were introduced to a majority of the charged residues. In one exception, replacing arginine 117 with an uncharged residue disrupted target binding and apoptosis signaling, but restoring the positive charge at position 117 failed to reconstitute the FADD function. Therefore, in vivo target binding of FADD involves an additional mechanism distinct from electrostatic interaction. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M504138200 |