Generation and Functional Characterization of Knock-in Mice Harboring the Cardiac Troponin I-R21C Mutation Associated with Hypertrophic Cardiomyopathy

The R21C substitution in cardiac troponin I (cTnI) is the only identified mutation within its unique N-terminal extension that is associated with hypertrophic cardiomyopathy (HCM) in man. Particularly, this mutation is located in the consensus sequence for β-adrenergic-activated protein kinase A (PK...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 287; no. 3; pp. 2156 - 2167
Main Authors Wang, Yingcai, Pinto, Jose Renato, Solis, Raquel Sancho, Dweck, David, Liang, Jingsheng, Diaz-Perez, Zoraida, Ge, Ying, Walker, Jeffery W., Potter, James D.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 13.01.2012
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The R21C substitution in cardiac troponin I (cTnI) is the only identified mutation within its unique N-terminal extension that is associated with hypertrophic cardiomyopathy (HCM) in man. Particularly, this mutation is located in the consensus sequence for β-adrenergic-activated protein kinase A (PKA)-mediated phosphorylation. The mechanisms by which this mutation leads to heart disease are still unclear. Therefore, we generated cTnI knock-in mouse models carrying an R21C mutation to evaluate the resultant functional consequences. Measuring the in vivo levels of incorporated mutant and WT cTnI, and their basal phosphorylation levels by top-down mass spectrometry demonstrated: 1) a dominant-negative effect such that, the R21C+/− hearts incorporated 24.9% of the mutant cTnI within the myofilament; and 2) the R21C mutation abolished the in vivo phosphorylation of Ser23/Ser24 in the mutant cTnI. Adult heterozygous (R21C+/−) and homozygous (R21C+/+) mutant mice activated the fetal gene program and developed a remarkable degree of cardiac hypertrophy and fibrosis. Investigation of cardiac skinned fibers isolated from WT and heterozygous mice revealed that the WT cTnI was completely phosphorylated at Ser23/Ser24 unless the mice were pre-treated with propranolol. After propranolol treatment (−PKA), the pCa-tension relationships of all three mice (i.e. WT, R21C+/−, and R21C+/+) were essentially the same. However, after treatment with propranolol and PKA, the R21C cTnI mutation reduced (R21C+/−) or abolished (R21C+/+) the well known decrease in the Ca2+ sensitivity of tension that accompanies Ser23/Ser24 cTnI phosphorylation. Altogether, the combined effects of the R21C mutation appear to contribute toward the development of HCM and suggest that another physiological role for the phosphorylation of Ser23/Ser24 in cTnI is to prevent cardiac hypertrophy. Background: The R21C substitution in cardiac troponin I (cTnI) is associated with hypertrophic cardiomyopathy in man. Results: The R21C mutation disrupts the consensus sequence for cTnI phosphorylation. Conclusion: The KI mouse model showed remarkable degree of cardiac hypertrophy and fibrosis after 12 months of age. Significance: One of the physiological roles for the phosphorylation of the cTnI N-terminal extension is to prevent cardiac hypertrophy.
Bibliography:Deceased.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M111.294306