Maximal Good Step Graph Methods for Reducing the Generation of the State Space

This paper proposes an effective method based on the two main partial order techniques which are persistent sets and covering step graph techniques, to deal with the state explosion problem. First, we introduce a new definition of sound steps, the firing of which enables to extremely reduce the stat...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 155805 - 155817
Main Authors Dou, Hao, Barkaoui, Kamel, Boucheneb, Hanifa, Jiang, Xiaoning, Wang, Shouguang
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper proposes an effective method based on the two main partial order techniques which are persistent sets and covering step graph techniques, to deal with the state explosion problem. First, we introduce a new definition of sound steps, the firing of which enables to extremely reduce the state space. Then, we propose a weaker sufficient condition about how to find the set of sound steps at each current marking. Next, we illustrate the relation between maximal sound steps and persistent sets, and propose a concept of good steps. Based on the maximal sound steps and good steps, a construction algorithm for generating a maximal good step graph (MGSG) of a Petri net (PN) is established. This algorithm first computes the maximal good step at each marking if there exists one, otherwise maximal sound steps are fired at the marking. Furthermore, we have proven that an MGSG can effectively preserve deadlocks of a Petri net. Finally, the change performance evaluation is made to demonstrate the superiority of our proposed method, compared with other related partial order techniques.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2948986