Single Molecule Adhesion Measurements Reveal Two Homophilic Neural Cell Adhesion Molecule Bonds with Mechanically Distinct Properties

Neural cell adhesion molecule (NCAM) is a cell surface adhesion glycoprotein that plays an important role in the development and stability of nervous tissue. The homophilic binding mechanism of NCAM is still a subject of debate on account of findings that appear to support different mechanisms. This...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 280; no. 49; pp. 41037 - 41046
Main Authors Wieland, Julie A., Gewirth, Andrew A., Leckband, Deborah E.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 09.12.2005
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Neural cell adhesion molecule (NCAM) is a cell surface adhesion glycoprotein that plays an important role in the development and stability of nervous tissue. The homophilic binding mechanism of NCAM is still a subject of debate on account of findings that appear to support different mechanisms. This paper describes single molecule force measurements with both full-length NCAM and NCAM mutants that lack different immunoglobulin (Ig) domains. By systematically applying an external, time-dependent force to the bond, we obtained parameters that describe the energy landscape of NCAM-NCAM bonds. Histograms of the rupture forces between the full-length NCAM extracellular domains revealed two binding events, one rupturing at higher forces than the other. These bond rupture data show that the two bonds have the same dissociation rates. Despite the energetic and kinetic similarities, the bond strengths differ significantly, and are mechanically distinct. Measurements with NCAM domain deletion mutants mapped the weaker bond to the Ig1-2 segment, and the stronger bond to the Ig3 domain. Finally, the quantitative agreement between the fragment adhesion and the strengths of both NCAM bonds shows that the domain deletions considered in this study do not alter the intrinsic strengths of either of the two bonds.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M503975200