Improved Bioavailability of a Water-Insoluble Drug by Inhalation of Drug-Containing Maltosyl-β-Cyclodextrin Microspheres Using a Four-Fluid Nozzle Spray Drier

We previously developed a unique four-fluid nozzle spray drier that can produce water-soluble microspheres containing water-insoluble drug nanoparticles in one step without any common solvent between the water-insoluble drug and water-soluble carrier. In the present study, we focused on maltosyl-β-c...

Full description

Saved in:
Bibliographic Details
Published inAAPS PharmSciTech Vol. 13; no. 4; pp. 1130 - 1137
Main Authors Ozeki, Tetsuya, Kano, Yoshihito, Takahashi, Norimitsu, Tagami, Tatsuaki, Okada, Hiroaki
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.12.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We previously developed a unique four-fluid nozzle spray drier that can produce water-soluble microspheres containing water-insoluble drug nanoparticles in one step without any common solvent between the water-insoluble drug and water-soluble carrier. In the present study, we focused on maltosyl-β-cyclodextrin (malt-β-CD) as a new water-soluble carrier and it was investigated whether drug/malt-β-CD microspheres could improve the bioavailability compared with our previously reported drug/mannitol (MAN) microspheres. The physicochemical properties of bare drug microparticles (ONO-2921, a model water-insoluble drug), drug/MAN microspheres, and drug/malt-β-CD microspheres were evaluated. In vitro aerosol performance, in vitro dissolution rate, and the blood concentration profiles after intratracheal administration were compared between these formulations. The mean diameter of both drug/MAN and drug/malt-β-CD microspheres was approximately 3–5 μm and both exhibited high aerosol performance (>20% in stages 2–7), but drug/malt-β-CD microspheres had superior release properties. Drug/malt-β-CD microspheres dissolved in an aqueous phase within 2 min, while drug/MAN microspheres failed to dissolve in 30 min. Inhalation of drug/malt-β-CD microspheres enhanced the area under the curve of the blood concentration curve by 15.9-fold than that of bare drug microparticles and by 6.1-fold than that of drug/MAN microspheres. Absolute bioavailability (pulmonary/intravenous route) of drug/malt-β-CD microspheres was also much higher (42%) than that of drug/MAN microspheres (6.9%). These results indicate that drug/malt-β-CD microspheres prepared by our four-fluid nozzle spray drier can improve drug solubility and pulmonary delivery.
ISSN:1530-9932
1530-9932
DOI:10.1208/s12249-012-9826-z