Two-Sample Mendelian Randomization Analysis Investigates Causal Associations Between Gut Microbial Genera and Inflammatory Bowel Disease, and Specificity Causal Associations in Ulcerative Colitis or Crohn’s Disease

Intestinal dysbiosis is associated with inflammatory bowel disease (IBD). Ulcerative colitis (UC) and Crohn's disease (CD), two subtypes of IBD, are characterized by unique microbial signatures, respectively. However, it is unclear whether UC or CD has a specific causal relationship with gut mi...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in immunology Vol. 13; p. 921546
Main Authors Liu, Bin, Ye, Ding, Yang, Hong, Song, Jie, Sun, Xiaohui, Mao, Yingying, He, Zhixing
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 04.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Intestinal dysbiosis is associated with inflammatory bowel disease (IBD). Ulcerative colitis (UC) and Crohn's disease (CD), two subtypes of IBD, are characterized by unique microbial signatures, respectively. However, it is unclear whether UC or CD has a specific causal relationship with gut microbiota.BackgroundIntestinal dysbiosis is associated with inflammatory bowel disease (IBD). Ulcerative colitis (UC) and Crohn's disease (CD), two subtypes of IBD, are characterized by unique microbial signatures, respectively. However, it is unclear whether UC or CD has a specific causal relationship with gut microbiota.To investigate the potential causal associations between gut microbial genera and IBD, UC, or CD, two-sample Mendelian randomization (MR) analyses were conducted.ObjectiveTo investigate the potential causal associations between gut microbial genera and IBD, UC, or CD, two-sample Mendelian randomization (MR) analyses were conducted.We obtained genome-wide association study (GWAS) summary statistics of gut microbiota and IBD, UC, or CD from published GWASs. Two-sample MR analyses were performed to identify potential causal gut microbial genera for IBD, UC, and CD using the inverse-variance weighted (IVW) method. Sensitivity analyses were also conducted to validate the robustness of the primary results of the MR analyses. Finally, a reverse MR analysis was performed to evaluate the possibility of reverse causation.Materials and MethodsWe obtained genome-wide association study (GWAS) summary statistics of gut microbiota and IBD, UC, or CD from published GWASs. Two-sample MR analyses were performed to identify potential causal gut microbial genera for IBD, UC, and CD using the inverse-variance weighted (IVW) method. Sensitivity analyses were also conducted to validate the robustness of the primary results of the MR analyses. Finally, a reverse MR analysis was performed to evaluate the possibility of reverse causation.Combining the results from the primary and sensitivity analyses, six bacterial genera were associated with the risk of IBD, UC, or CD in the IVW method. Briefly, Eubacterium ventriosum group was associated with a lower risk of IBD (P=0.011) and UC (P=1.00×10-4), whereas Coprococcus 2 was associated with a higher risk of IBD (P=0.022) and UC (P=0.007). In addition, we found a positive association between Oxalobacter with IBD (P=0.001) and CD (P=0.002), and Ruminococcaceae UCG014 with IBD (P=0.005) and CD (P=0.007). We also noticed a negative association between Enterorhabdus (P=0.044) and IBD, and between Lachnospiraceae UCG001 (P=0.023) and CD. We did not find causal effects of IBD, UC, or CD on these bacterial genera in the reverse MR analysis.ResultsCombining the results from the primary and sensitivity analyses, six bacterial genera were associated with the risk of IBD, UC, or CD in the IVW method. Briefly, Eubacterium ventriosum group was associated with a lower risk of IBD (P=0.011) and UC (P=1.00×10-4), whereas Coprococcus 2 was associated with a higher risk of IBD (P=0.022) and UC (P=0.007). In addition, we found a positive association between Oxalobacter with IBD (P=0.001) and CD (P=0.002), and Ruminococcaceae UCG014 with IBD (P=0.005) and CD (P=0.007). We also noticed a negative association between Enterorhabdus (P=0.044) and IBD, and between Lachnospiraceae UCG001 (P=0.023) and CD. We did not find causal effects of IBD, UC, or CD on these bacterial genera in the reverse MR analysis.This study expanded gut microbial genera that were causally associated with the risk of IBD, and also revealed specificity-gut microbial genera for UC or CD.ConclusionThis study expanded gut microbial genera that were causally associated with the risk of IBD, and also revealed specificity-gut microbial genera for UC or CD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Giuseppe Murdaca, University of Genoa, Italy
Reviewed by: Marcos Edgar Herkenhoff, University of São Paulo, Brazil; Serena Vitale, National Research Council (CNR), Italy
This article was submitted to Autoimmune and Autoinflammatory Disorders, a section of the journal Frontiers in Immunology
ISSN:1664-3224
1664-3224
DOI:10.3389/fimmu.2022.921546