The Quantum Capacity of Channels With Arbitrarily Correlated Noise

We study optimal rates for quantum communication over a single use of a channel, which itself can correspond to a finite number of uses of a channel with arbitrarily correlated noise. The corresponding capacity is often referred to as the one-shot quantum capacity. In this paper, we prove bounds on...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 56; no. 3; pp. 1447 - 1460
Main Authors Buscemi, F., Datta, N.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study optimal rates for quantum communication over a single use of a channel, which itself can correspond to a finite number of uses of a channel with arbitrarily correlated noise. The corresponding capacity is often referred to as the one-shot quantum capacity. In this paper, we prove bounds on the one-shot quantum capacity of an arbitrary channel. This allows us to compute the quantum capacity of a channel with arbitrarily correlated noise, in the limit of asymptotically many uses of the channel. In the memoryless case, we explicitly show that our results reduce to known expressions for the quantum capacity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2009.2039166