Microstructure and damping properties of MnCuNiFeCe alloy

Mn-Cu alloys could exhibit high damping ability and excellent mechanical properties after proper heat treatment. In order to reduce the influence of impurity elements on damping capacity of Mn-Cu alloys, rare ele- ment cerium (Ce) was added into MnCuNiFe alloys. It is indicated that the contents of...

Full description

Saved in:
Bibliographic Details
Published inRare Metals Vol. 35; no. 8; pp. 615 - 619
Main Authors Lu, Feng-Shuang, Wu, Bin, Zhang, Jian-Fu, Li, Ping, Zhao, Dong-Liang
Format Journal Article Book Review
LanguageEnglish
Published Beijing Nonferrous Metals Society of China 01.08.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mn-Cu alloys could exhibit high damping ability and excellent mechanical properties after proper heat treatment. In order to reduce the influence of impurity elements on damping capacity of Mn-Cu alloys, rare ele- ment cerium (Ce) was added into MnCuNiFe alloys. It is indicated that the contents of C, S and Si which have adverse effects on the damping capacity decrease and the grains are refined with the Ce content increasing. The microstructure of the MnCuNiFeCe alloy was investigated by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM). The damping ability (tane) of the alloy was characterized by dynamical mechanical analyzer (DMA). It is found that the damping ability (tane) retains a very high level which is all above 0.05 from the temperature of -50 to 75 ℃ with the addition of Ce element. It is expected that the Ce alloying MnCuNiFe alloy with refined grains could find wide applications in the field of industry.
Bibliography:Mn-Cu alloy; Damping properties; Cerium
Mn-Cu alloys could exhibit high damping ability and excellent mechanical properties after proper heat treatment. In order to reduce the influence of impurity elements on damping capacity of Mn-Cu alloys, rare ele- ment cerium (Ce) was added into MnCuNiFe alloys. It is indicated that the contents of C, S and Si which have adverse effects on the damping capacity decrease and the grains are refined with the Ce content increasing. The microstructure of the MnCuNiFeCe alloy was investigated by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM). The damping ability (tane) of the alloy was characterized by dynamical mechanical analyzer (DMA). It is found that the damping ability (tane) retains a very high level which is all above 0.05 from the temperature of -50 to 75 ℃ with the addition of Ce element. It is expected that the Ce alloying MnCuNiFe alloy with refined grains could find wide applications in the field of industry.
11-2112/TF
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1001-0521
1867-7185
DOI:10.1007/s12598-016-0702-y