Numerical solutions for 2D unsteady Laplace-type problems of anisotropic functionally graded materials
The time-dependent Laplace-type equation of variable coefficients for anisotropic inhomogeneous media is discussed in this paper. Numerical solutions to problems which are governed by the equation are sought by using a combined Laplace transform and boundary element method. The variable coefficients...
Saved in:
Published in | Mathematical modelling and analysis Vol. 27; no. 2; pp. 303 - 321 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Vilnius
Vilnius Gediminas Technical University
27.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The time-dependent Laplace-type equation of variable coefficients for anisotropic inhomogeneous media is discussed in this paper. Numerical solutions to problems which are governed by the equation are sought by using a combined Laplace transform and boundary element method. The variable coefficients equation is transformed to a constant coefficients equation. The constant coefficients equation after being Laplace transformed is then written in a boundary-only integral equation involving a time-free fundamental solution. The boundary integral equation is therefore employed to find the numerical solutions using a standard boundary element method. Finally the numerical results are inversely transformed numerically using the Stehfest formula to obtain solutions in the time variable. Some problems of anisotropic functionally graded media are considered. The results show that the combined Laplace transform and boundary element method is accurate and easy to implement. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1392-6292 1648-3510 |
DOI: | 10.3846/mma.2022.14463 |