Multimodal Breast Parenchymal Patterns Correlation Using a Patient-Specific Biomechanical Model

In this paper, we aim to produce a realistic 2-D projection of the breast parenchymal distribution from a 3-D breast magnetic resonance image (MRI). To evaluate the accuracy of our simulation, we compare our results with the local breast density (i.e., density map) obtained from the complementary fu...

Full description

Saved in:
Bibliographic Details
Published inIEEE Transactions on Medical Imaging Vol. 37; no. 3; pp. 712 - 723
Main Authors Garcia, Eloy, Diez, Yago, Diaz, Oliver, Llado, Xavier, Gubern-Merida, Albert, Marti, Robert, Marti, Joan, Oliver, Arnau
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2018
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2017.2749685

Cover

Loading…
More Information
Summary:In this paper, we aim to produce a realistic 2-D projection of the breast parenchymal distribution from a 3-D breast magnetic resonance image (MRI). To evaluate the accuracy of our simulation, we compare our results with the local breast density (i.e., density map) obtained from the complementary full-field digital mammogram. To achieve this goal, we have developed a fully automatic framework, which registers MRI volumes to X-ray mammograms using a subject-specific biomechanical model of the breast. The optimization step modifies the position, orientation, and elastic parameters of the breast model to perform the alignment between the images. When the model reaches an optimal solution, the MRI glandular tissue is projected and compared with the one obtained from the corresponding mammograms. To reduce the loss of information during the ray-casting, we introduce a new approach that avoids resampling the MRI volume. In the results, we focus our efforts on evaluating the agreement of the distributions of glandular tissue, the degree of structural similarity, and the correlation between the real and synthetic density maps. Our approach obtained a high-structural agreement regardless the glandularity of the breast, whilst the similarity of the glandular tissue distributions and correlation between both images increase in denser breasts. Furthermore, the synthetic images show continuity with respect to large structures in the density maps.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0278-0062
1558-254X
1558-254X
DOI:10.1109/TMI.2017.2749685