The long and successful journey of electrochemically active amino acids. From fundamental adsorption studies to potential surface engineering tools

Proteins have been the subject of electrochemical studies. It is possible to apply electrochemical techniques to obtain information about their structure due to the presence of five electroactive amino acids that can be oriented to the outside of the peptidic chain. These amino acids are L-Tryptopha...

Full description

Saved in:
Bibliographic Details
Published inAnais da Academia Brasileira de Ciências Vol. 90; no. 1 suppl 1; pp. 607 - 630
Main Authors DOURADO, ANDRÉ H.B., PASTRIÁN, FABIÁN C., TORRESI, SUSANA I. CÓRDOBA DE
Format Journal Article
LanguageEnglish
Published Brazil Academia Brasileira de Ciências 2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Proteins have been the subject of electrochemical studies. It is possible to apply electrochemical techniques to obtain information about their structure due to the presence of five electroactive amino acids that can be oriented to the outside of the peptidic chain. These amino acids are L-Tryptophan (L-Trp), L-Tyrosine (L-Tyr), L-Histidine (L-His), L-Methionine (L-Met) and L-Cysteine (L-Cys); their electrochemical behavior being subject of extensive research, but it is still controversial. No spectroscopic investigations have been reported on L-Trp, and due to the short life time of the intermediates, ex situ techniques cannot be employed, leading to a never-ending discussion about possible intermediates. In the L-Tyr and L-His cases, spectroelectrochemical studies were performed and different intermediates were observed, suggesting that some intermediates may be observed under specific conditions, as proposed for L-Cys. This amino acid is the most interesting among the electroactive ones because of the presence of a thiol moiety at its side chain, leading to a wide range of oxidation states. It can adsorb onto surfaces of different crystallographic orientation in stereoselective conformation, modifying the surface for different applications.as a surface engineering tool since it plays the role of as an anchor for the growing of nanocrystals inside proteic templates.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0001-3765
1678-2690
1678-2690
DOI:10.1590/0001-3765201720170434