Synthesis and biological roles of O-glycans in insects

Protein O-glycosylation is the attachment of carbohydrate structures to the oxygen atom in the hydroxyl group of Serine and Threonine residues. This post-translational modification is commonly found on the majority of proteins trafficking through the secretory pathway and is reported to influence pr...

Full description

Saved in:
Bibliographic Details
Published inGlycoconjugate journal Vol. 37; no. 1; pp. 47 - 56
Main Authors Li, Weidong, De Schutter, Kristof, Van Damme, Els J. M., Smagghe, Guy
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Protein O-glycosylation is the attachment of carbohydrate structures to the oxygen atom in the hydroxyl group of Serine and Threonine residues. This post-translational modification is commonly found on the majority of proteins trafficking through the secretory pathway and is reported to influence protein characteristics such as folding, secretion, stability, solubility, oligomerization and intracellular localization. In addition, O-glycosylation is essential for cell-cell interactions, protein-protein interactions and many biological processes, such as stress response, immunization, phosphorylation, ubiquitination, cell division, metabolism and cell signaling. The availability of sequenced genomes and genetic tools to create mutants with clear phenotypes makes insects an interesting model system to study O-glycosylation. In this review, we provide an overview of the current knowledge of O-glycosylation, mainly obtained from the model organism Drosophila melanogaster , with a focus on the synthesis and biological roles of the common O-glycans in insects.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:0282-0080
1573-4986
1573-4986
DOI:10.1007/s10719-019-09867-1