What we can learn from the complex architecture of single axons
Anterogradely labeled connections at the single-axon level provide unparalleled spatial and quantitative data as well as a novel perspective on laminar, columnar, hierarchical and other aspects of cortical organization. Here, I briefly summarize single-axon results from representative examples of th...
Saved in:
Published in | Brain Structure and Function Vol. 225; no. 4; pp. 1327 - 1347 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Anterogradely labeled connections at the single-axon level provide unparalleled spatial and quantitative data as well as a novel perspective on laminar, columnar, hierarchical and other aspects of cortical organization. Here, I briefly summarize single-axon results from representative examples of thalamocortical, corticocortical, callosal, and lateral intrinsic connections, with attention to implications for cortical organization. Particularly worth emphasizing is the intricate spatial configuration and striking morphometric heterogeneity of individual axons even within the same system of connections. A short section touches on patterns of axonal trajectories in the distal, preterminal few millimeters. Emphasis is on studies in nonhuman primates from about 1983 to present, with non-viral tracers and 2-D reconstruction (i.e., compressed
z-
axis) in the early visual cortical pathway. The last section recapitulates what this approach can tell us about inter-areal communication and cortical organization, and possible implications for dynamics and effective connectivity, and concludes with comments on open questions and future directions. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 1863-2653 1863-2661 0340-2061 |
DOI: | 10.1007/s00429-019-02023-3 |