A Low-Cost Paper Glucose Sensor with Molecularly Imprinted Polyaniline Electrode

For the hundreds of millions of worldwide diabetic patients, glucose test strips are the most important and commonly used tool for monitoring blood glucose levels. Commercial test strips use glucose oxidases as recognition agents, which increases the cost and reduces the durability of test strips. T...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 4; p. 1098
Main Authors Chen, Zheyuan, Wright, Christopher, Dincel, Onder, Chi, Ting-Yen, Kameoka, Jun
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 17.02.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:For the hundreds of millions of worldwide diabetic patients, glucose test strips are the most important and commonly used tool for monitoring blood glucose levels. Commercial test strips use glucose oxidases as recognition agents, which increases the cost and reduces the durability of test strips. To lower the cost of glucose sensors, we developed a paper-based electrical sensor with molecularly imprinted glucose recognition sites and demonstrated the determination of various glucose concentrations in bovine blood solutions. The sensing electrode is integrated with molecular recognition sites in the conductive polymer. A calibration graph as a function of glucose concentration in aqueous solution was acquired and matched with a correlation coefficient of 0.989. We also demonstrated the determination of the added glucose concentrations ranging from 2.2 to 11.1 mM in bovine blood samples with a linear correlation coefficient of 0.984. This non-enzymatic glucose sensor has the potential to reduce the health care cost of test strips as well as make glucose sensor test strips more accessible to underserved communities.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s20041098