Temperature-Corrected Fluidic Glucose Sensor Based on Microwave Resonator

In this paper, a fluidic glucose sensor that is based on a complementary split-ring resonator (CSRR) is proposed for the microwave frequency region. The detection of glucose with different concentrations from 0 mg/dL to 400 mg/dL in a non-invasive manner is possible by introducing a fluidic system....

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 18; no. 11; p. 3850
Main Authors Jang, Chorom, Park, Jin-Kwan, Lee, Hee-Jo, Yun, Gi-Ho, Yook, Jong-Gwan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 09.11.2018
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, a fluidic glucose sensor that is based on a complementary split-ring resonator (CSRR) is proposed for the microwave frequency region. The detection of glucose with different concentrations from 0 mg/dL to 400 mg/dL in a non-invasive manner is possible by introducing a fluidic system. The glucose concentration can be continuously monitored by tracking the transmission coefficient S 21 as a sensing parameter. The variation tendency in S 21 by the glucose concentration is analyzed with equivalent circuit model. In addition, to eradicate the systematic error due to temperature variation, the sensor is tested in two temperature conditions: the constant temperature condition and the time-dependent varying temperature condition. For the varying temperature condition, the temperature correction function was derived between the temperature and the variation in S 21 for DI water. By applying the fitting function to glucose solution, the subsidiary results due to temperature can be completely eliminated. As a result, the S 21 varies by 0.03 dB as the glucose concentration increases from 0 mg/dL to 400 mg/dL.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s18113850