Inhibition of lysyl oxidase by pharmacological intervention and genetic manipulation alleviates epilepsy-associated cognitive disorder

Epilepsy-associated cognitive disorder (ECD), a prevalent comorbidity in epilepsy patients, has so far uncharacterized etiological origins. Our prior work revealed that lysyl oxidase (Lox) acted as a novel contributor of ferroptosis, a recently discovered cell death mode in the regulation of brain f...

Full description

Saved in:
Bibliographic Details
Published inBrain research bulletin Vol. 210; p. 110928
Main Authors Chen, Kang-Ni, Peng, Qi-Lin, Cao, Dan-Feng, Wang, Zhao-Jun, Zhang, Kai, Zhou, Xin-Yu, Min, Dong-Yu, Zhou, Bo-Ting, Mao, Xiao-Yuan
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.05.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Epilepsy-associated cognitive disorder (ECD), a prevalent comorbidity in epilepsy patients, has so far uncharacterized etiological origins. Our prior work revealed that lysyl oxidase (Lox) acted as a novel contributor of ferroptosis, a recently discovered cell death mode in the regulation of brain function. However, the role of Lox-mediated ferroptosis in ECD remains unknown. ECD mouse model was established 2 months later following a single injection of kainic acid (KA) for. After chronic treatment with KA, mice were treated with different doses (30 mg/kg, 100 mg/kg and 300 mg/kg) of Lox inhibitor BAPN. Additionally, hippocampal-specific Lox knockout mice was also constructed and employed to validate the role of Lox in ECD. Cognitive functions were assessed using novel object recognition test (NOR) and Morris water maze test (MWM). Protein expression of phosphorylated cAMP-response element binding (CREB), a well-known molecular marker for evaluation of cognitive performance, was also detected by Western blot. The protein distribution of Lox was analyzed by immunofluorescence. In KA-induced ECD mouse model, ferroptosis process was activated according to upregulation of 4-HNE protein and a previously discovered ferroptosis in our group, namely, Lox was remarkably increased. Pharmacological inhibition of Lox by BAPN at the dose of 100 mg/kg significantly increased the discrimination index following NOR test and decreased escape latency as well as augmented passing times within 60 s following MWM test in ECD mouse model. Additionally, deficiency of Lox in hippocampus also led to pronounced improvement of deficits in ECD model. These findings indicate that the ferroptosis regulatory factor, Lox, is activated in ECD. Ablation of Lox by either pharmacological intervention or genetic manipulation ameliorates the impairment in ECD mouse model, which suggest that Lox serves as a promising therapeutic target for treating ECD in clinic. [Display omitted] •Up-regulation of Lox in ECD•Pharmacological inhibition of Lox mitigated ECD•Genetic deletion of Lox ameliorated ECD
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0361-9230
1873-2747
DOI:10.1016/j.brainresbull.2024.110928