Two-dimensional numerical simulation of single bubble rising behavior in liquid metal using moving particle semi-implicit method

Gas-lift pump in liquid metal cooling fast reactor (LMFR) is an innovative conceptual design to enhance the natural circulation ability of reactor core. The two phase flow characteristics of gas–liquid metal make significant improvement of the natural circulation capacity and reactor safety. It is i...

Full description

Saved in:
Bibliographic Details
Published inProgress in nuclear energy (New series) Vol. 64; pp. 31 - 40
Main Authors Zuo, Juanli, Tian, Wenxi, Chen, Ronghua, Qiu, Suizheng, Su, Guanghui
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Gas-lift pump in liquid metal cooling fast reactor (LMFR) is an innovative conceptual design to enhance the natural circulation ability of reactor core. The two phase flow characteristics of gas–liquid metal make significant improvement of the natural circulation capacity and reactor safety. It is important to study bubble flow in liquid metal. In present study, the rising behaviors of a single nitrogen bubble in 5 kinds of common stagnant liquid metals (lead bismuth alloy (LBE), liquid kalium (K), sodium (Na), potassium sodium alloy (Na–K) and lithium lead alloy (Li–Pb)) and in flowing lead bismuth alloy have been numerically simulated using two-dimensional moving particle semi-implicit (MPS) method. The whole bubble rising process in liquid was captured. The bubble shape, rising velocity and aspect ratio during rising process of single nitrogen bubble were studied. The computational results show that, in the stagnant liquid metals, the bubble rising shape can be described by the Grace's diagram, the terminal velocity is not beyond 0.3 m/s, the terminal aspect ratio is between 0.5 and 0.6. In the flowing lead bismuth alloy, as the liquid velocity increases, both the bubble aspect ratio and terminal velocity increase as well. This work is the fundamental research of two phase flow and will be important to the study of the natural circulation capability of Accelerator Driven System (ADS) by using gas-lift pump. ► The rising behaviors of single nitrogen bubble have been numerically simulated. ► The single bubble is in the stagnant liquid metals and flowing lead bismuth alloy. ► Two-dimensional moving particle semi-implicit (MPS) method is used. ► This work is the fundamental research of two phase flow.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0149-1970
DOI:10.1016/j.pnucene.2012.12.003