Environmental, Economic, and Social Aspects of Human Urine Valorization through Microbial Fuel Cells from the Circular Economy Perspective

Population growth increases the challenge of meeting basic human needs, such as water, a limited resource. Consumption habits and water pollution have compromised natural resources to unsustainable levels. Sustainable effluent treatment practices, such as decentralized systems focused on energy, nut...

Full description

Saved in:
Bibliographic Details
Published inMicromachines (Basel) Vol. 13; no. 12; p. 2239
Main Authors Martínez-Castrejón, Mariana, López-Díaz, Jazmin A, Solorza-Feria, Omar, Talavera-Mendoza, Oscar, Rodríguez-Herrera, América L, Alcaraz-Morales, Osbelia, Hernández-Flores, Giovanni
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 16.12.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Population growth increases the challenge of meeting basic human needs, such as water, a limited resource. Consumption habits and water pollution have compromised natural resources to unsustainable levels. Sustainable effluent treatment practices, such as decentralized systems focused on energy, nutrients, and water recovery, have attracted the attention of the scientific community. Human urine (HU) is a physiological liquid waste whose main component is water (~95%). HU has a significant amount of nutrients, such as N, P, K, and organic matter, which are usually lacking in fecal coliforms. Therefore, the possibility exists of recovering nutrients and energy from HU using sustainable and non-sustainable technologies. Treating HU in bioelectrochemical systems (BES) is a novel alternative to obtaining byproducts from this effluent more sustainably than in electrochemical systems. Microbial fuel cells (MFCs) are an interesting example, contributing to HU revalorization from unwanted waste into a valuable resource of nutrients, energy, and water. Even when urine-operated MFCs have not generated attractive potential outputs or produced considerable amounts of bioelectricity, this review emphasizes HU advantages as nutrients or water sources. The aim of this review was to analyze the current development of BES for HU treatment based on the water circular economy, discussing challenges and perspectives researchers might encounter.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:2072-666X
2072-666X
DOI:10.3390/mi13122239