Study on a nano-porous gold/polyamidoamine (NPG/PAMAM)-based electrochemical aptamer biosensor for the detection of ochratoxin a in the red wine

In this study, a novel electrochemical aptamer sensor for detecting ochratoxin A (OTA) was constructed. First, a gold-copper alloy film was prepared via electrochemical deposition, and copper was selectively dissolved in constant potential mode for obtaining the nano-porous gold modified screen-prin...

Full description

Saved in:
Bibliographic Details
Published inFood additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment Vol. 40; no. 8; pp. 1059 - 1073
Main Authors Wensi, Zhang, Chuanjin, Cui, Chen, Hongshuo, Xuechao, Zhang, Junhui, Du
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 03.08.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, a novel electrochemical aptamer sensor for detecting ochratoxin A (OTA) was constructed. First, a gold-copper alloy film was prepared via electrochemical deposition, and copper was selectively dissolved in constant potential mode for obtaining the nano-porous gold modified screen-printed carbon electrodes (NPG/SPCE). Then, 2-mercaptoethylamine was dropped on the NPG/SPCE surface and Au-S covalent bonds were formed for immobilizing the metal. Glutaraldehyde as cross-linking agent was added, which resulted in immobilization and attachment of PAMAM to the 2-mercaptoethylamine through the dehydration condensation reaction. During the preparation process, the nano-porous gold and PAMAM-modified layers were characterized by SEM, XRD, and IR spectroscopy, respectively. The characterization results showed that the nano-porous gold and PAMAM composite films were successfully modified. Finally, the OTA aptamer was cross-linked with PAMAM by glutaraldehyde to complete construction of the Apt/PAMAM/NPG/SPCE sensor. The electrochemical performance of this sensor was tested in ochratoxin A solutions with the DPV method. The results showed that the sensor's reproducibility, stability, and specificity were good. The spiked recoveries in red wine ranged from 99.65%∼101.6%, with a linear range of 0.5 ng/mL∼20 ng/mL and a minimum detection limit of 0.141 ng/mL. Thus, the novel biosensor may provide a promising tool for the trace detection of OTA.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-0049
1944-0057
DOI:10.1080/19440049.2023.2240435