Modified Surface Relief Layer Created by Holographic Lithography: Application to Selective Sodium and Potassium Sensing
Point-of-care diagnostics will rely upon the development of low-cost, noncomplex, and easily integrated systems in order to examine biological samples such as blood and urine obtained from the patient. The development of metal ion sensors is a subject of significant relevance for physiological sampl...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 19; no. 5; p. 1026 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
28.02.2019
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Point-of-care diagnostics will rely upon the development of low-cost, noncomplex, and easily integrated systems in order to examine biological samples such as blood and urine obtained from the patient. The development of metal ion sensors is a subject of significant relevance for physiological samples. The level of different blood electrolytes, mainly H+, Na+, K+ and Cl− is considerably used to monitor irregular physiologies. The particular challenge in biosensing, and in fact for any other sensor, is signal differentiation between non-specifically bound material and the specific detecting of the target molecule/ion. The biosensors described in this paper are fabricated by a holographic recording of surface relief structures in a photopolymer material. The surface structures are modified by coating with either dibenzo-18-crown-6 (DC) or tetraethyl 4-tert-butylcalix[4]arene (TBC), which are embedded in a polymer matrix. Interrogation of these structures by light allows indirect measurement of the concentration of the analyte. The influence of polymer matrices with different porosities, plasticised polyvinyl chloride (PVC) and a sol-gel matrix, on the performance of the sensors for detection of K+ and Na+ is examined. Here we demonstrate a proof of concept that by using a matrix with higher porosity one can increase the sensitivity of the sensor. The results showed that the DC sensing layer provides a selective response to K+ over Na+ and the TBC modified grating is more responsive to Na+ over K+. The sensor responds to K+ and Na+ within the physiological concentration ranges. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s19051026 |