Composite quadratic Lyapunov functions for constrained control systems

A Lyapunov function based on a set of quadratic functions is introduced in this paper. We call this Lyapunov function a composite quadratic function. Some important properties of this Lyapunov function are revealed. We show that this function is continuously differentiable and its level set is the c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 48; no. 3; pp. 440 - 450
Main Authors Hu, Tingshu, Lin, Zongli
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2003
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A Lyapunov function based on a set of quadratic functions is introduced in this paper. We call this Lyapunov function a composite quadratic function. Some important properties of this Lyapunov function are revealed. We show that this function is continuously differentiable and its level set is the convex hull of a set of ellipsoids. These results are used to study the set invariance properties of continuous-time linear systems with input and state constraints. We show that, for a system under a given saturated linear feedback, the convex hull of a set of invariant ellipsoids is also invariant. If each ellipsoid in a set can be made invariant with a bounded control of the saturating actuators, then their convex hull can also be made invariant by the same actuators. For a set of ellipsoids, each invariant under a separate saturated linear feedback, we also present a method for constructing a nonlinear continuous feedback law which makes their convex hull invariant.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2003.809149