MetiTree: a web application to organize and process high-resolution multi-stage mass spectrometry metabolomics data

Identification of metabolites using high-resolution multi-stage mass spectrometry (MS(n)) data is a significant challenge demanding access to all sorts of computational infrastructures. MetiTree is a user-friendly, web application dedicated to organize, process, share, visualize and compare MS(n) da...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 28; no. 20; pp. 2707 - 2709
Main Authors ROJAS-CHERTO, Miguel, VLIET, Michael Van, PEIRONCELY, Julio E, DOORN, Ronnie Van, KOOYMAN, Maarten, TE BEEK, Tim, DRIEL, Marc A. Van, HANKEMEIER, Thomas, REIJMERS, Theo
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 15.10.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Identification of metabolites using high-resolution multi-stage mass spectrometry (MS(n)) data is a significant challenge demanding access to all sorts of computational infrastructures. MetiTree is a user-friendly, web application dedicated to organize, process, share, visualize and compare MS(n) data. It integrates several features to export and visualize complex MS(n) data, facilitating the exploration and interpretation of metabolomics experiments. A dedicated spectral tree viewer allows the simultaneous presentation of three related types of MS(n) data, namely, the spectral data, the fragmentation tree and the fragmentation reactions. MetiTree stores the data in an internal database to enable searching for similar fragmentation trees and matching against other MS(n) data. As such MetiTree contains much functionality that will make the difficult task of identifying unknown metabolites much easier. MetiTree is accessible at http://www.MetiTree.nl. The source code is available at https://github.com/NetherlandsMetabolomicsCentre/metitree/wiki.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Associate Editor: Janet Kelso
ISSN:1367-4803
1367-4811
DOI:10.1093/bioinformatics/bts486