Nrf2 is a novel regulator of bone acquisition

Abstract Nuclear factor E2 p45-related factor 2 (Nrf2) is a transcription factor involved in the expression of cytoprotective genes induced by external stresses. We investigated the role of Nrf2 in osteoclast and osteoblast differentiation. Nrf2 knockdown or deletion increased osteoclastic different...

Full description

Saved in:
Bibliographic Details
Published inBone (New York, N.Y.) Vol. 63; pp. 36 - 46
Main Authors Park, Cheol Kyu, Lee, Youngkyun, Kim, Kyun Ha, Lee, Zang Hee, Joo, Myungsoo, Kim, Hong-Hee
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.06.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Nuclear factor E2 p45-related factor 2 (Nrf2) is a transcription factor involved in the expression of cytoprotective genes induced by external stresses. We investigated the role of Nrf2 in osteoclast and osteoblast differentiation. Nrf2 knockdown or deletion increased osteoclastic differentiation from bone marrow-derived macrophages (BMMs) through the upregulation of NF-κB, c-Fos, and NFATc1 transcription factors. Nrf2 also inhibited osteoblast differentiation and mineralization via suppression of key regulatory proteins, such as Runx2, osteocalcin, and osterix. Micro-computed tomography and histomorphometric analyses showed an increase in bone mass of Nrf2 knockout compared to that of wild type mice. In addition, the mineral apposition rate and the number of osteoblasts in bone were higher in Nrf2 knockout mice. However, bone resorption parameters, namely DPD and CTX levels, were not affected by Nrf2 deletion. In a coculture condition where calvarial osteoblasts and BMMs from wild type and Nrf2 knockout mice were grown, deletion of Nrf2 in osteoblasts markedly reduced osteoclast formation. This effect was due to an increase in OPG expression in Nrf2 knockout osteoblasts. Taken as a whole, these results indicate that Nrf2 is intrinsically inhibitory to both osteoblast and osteoclast differentiation but its effect on osteoblasts is dominant to its effect on osteoclasts in vivo.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:8756-3282
1873-2763
DOI:10.1016/j.bone.2014.01.025