Spatial disparity coding in the superior colliculus of the cat

Cells in the superficial layers of the superior colliculus of the cat have mainly binocular receptive fields. The aim of the present experiment was to investigate the sensitivity of these cells to horizontal spatial disparity. Unit recordings were carried out in the superficial layers of the superio...

Full description

Saved in:
Bibliographic Details
Published inExperimental brain research Vol. 119; no. 3; pp. 333 - 344
Main Authors BACON, B. A, VILLEMAGNE, J, BERGERON, A, LEPORE, F, GUILLEMOT, J.-P
Format Journal Article
LanguageEnglish
Published Berlin Springer 01.04.1998
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cells in the superficial layers of the superior colliculus of the cat have mainly binocular receptive fields. The aim of the present experiment was to investigate the sensitivity of these cells to horizontal spatial disparity. Unit recordings were carried out in the superficial layers of the superior colliculus of paralyzed and anesthetized cats. Centrally located receptive fields were mapped, separated using prisms, and then stimulated simultaneously using two luminous bars optimally adjusted to the size of the excitatory region of the receptive fields. Only binocular cells were tested, and 65% of these units were found to be sensitive to spatial disparities. Some cells (20%) were clearly insensitive to spatial disparity and the remaining 15% showed complex, unclassifiable interactions. The sensitive cells could be divided into four classes based on their disparity-sensitivity profiles: 38% showed excitatory interactions, whereas 9% showed inhibitory interactions. Moreover, 11% and 7% of the cells responded, respectively, to crossed or uncrossed disparities, and were classified as near cells and far cells. Whereas the general shapes of the sensitivity profiles were similar to those of cells in areas 17-18, selectivity in the superior colliculus was significantly coarser. The superficial layers of the superior colliculus project topographically to the deep layers of the superior colliculus, which are known to contain circuits involved in the control of ocular movements. The results thus suggest that disparity-sensitive cells of the superior colliculus could feed information to these oculomotor neurons, allowing for the localization and fixation of objects on the appropriate plane of vision.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0014-4819
1432-1106
DOI:10.1007/s002210050349