Defect reconfiguration in a Ti–Al alloy via electroplasticity

It has been known for decades that the application of pulsed direct current can significantly enhance the formability of metals. However, the detailed mechanisms of this effect have been difficult to separate from simple Joule heating. Here, we study the electroplastic deformation of Ti–Al (7 at.% A...

Full description

Saved in:
Bibliographic Details
Published inNature materials Vol. 20; no. 4; pp. 468 - 472
Main Authors Zhao, Shiteng, Zhang, Ruopeng, Chong, Yan, Li, Xiaoqing, Abu-Odeh, Anas, Rothchild, Eric, Chrzan, Daryl C., Asta, Mark, Morris, J. W., Minor, Andrew M.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.04.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It has been known for decades that the application of pulsed direct current can significantly enhance the formability of metals. However, the detailed mechanisms of this effect have been difficult to separate from simple Joule heating. Here, we study the electroplastic deformation of Ti–Al (7 at.% Al), an alloy that is uniquely suited for uncoupling this behaviour because, contrary to most metals, it has inherently lower ductility at higher temperature. We find that during mechanical deformation, electropulsing enhances cross-slip, producing a wavy dislocation morphology, and enhances twinning, which is similar to what occurs during cryogenic deformation. As a consequence, dislocations are prevented from localizing into planar slip bands that would lead to the early failure of the alloy under tension. Our results demonstrate that this macroscopic electroplastic behaviour originates from defect-level microstructural reconfiguration that cannot be rationalized by simple Joule heating. Transmission electron microscopy reveals the electroplastic effects in a Ti–Al alloy, which can be uncoupled from Joule heating effects. Electropulsing during deformation enhances wavy slip of dislocations, reconfiguring the dislocation pattern, and hence increases the ductility.
AbstractList It has been known for decades that the application of pulsed direct current can significantly enhance the formability of metals. However, the detailed mechanisms of this effect have been difficult to separate from simple Joule heating. Here, we study the electroplastic deformation of Ti–Al (7 at.% Al), an alloy that is uniquely suited for uncoupling this behaviour because, contrary to most metals, it has inherently lower ductility at higher temperature. We find that during mechanical deformation, electropulsing enhances cross-slip, producing a wavy dislocation morphology, and enhances twinning, which is similar to what occurs during cryogenic deformation. As a consequence, dislocations are prevented from localizing into planar slip bands that would lead to the early failure of the alloy under tension. Our results demonstrate that this macroscopic electroplastic behaviour originates from defect-level microstructural reconfiguration that cannot be rationalized by simple Joule heating.Transmission electron microscopy reveals the electroplastic effects in a Ti–Al alloy, which can be uncoupled from Joule heating effects. Electropulsing during deformation enhances wavy slip of dislocations, reconfiguring the dislocation pattern, and hence increases the ductility.
It has been known for decades that the application of pulsed direct current can significantly enhance the formability of metals. However, the detailed mechanisms of this effect have been difficult to separate from simple Joule heating. Here, we study the electroplastic deformation of Ti-Al (7 at.% Al), an alloy that is uniquely suited for uncoupling this behaviour because, contrary to most metals, it has inherently lower ductility at higher temperature. We find that during mechanical deformation, electropulsing enhances cross-slip, producing a wavy dislocation morphology, and enhances twinning, which is similar to what occurs during cryogenic deformation. As a consequence, dislocations are prevented from localizing into planar slip bands that would lead to the early failure of the alloy under tension. Our results demonstrate that this macroscopic electroplastic behaviour originates from defect-level microstructural reconfiguration that cannot be rationalized by simple Joule heating.It has been known for decades that the application of pulsed direct current can significantly enhance the formability of metals. However, the detailed mechanisms of this effect have been difficult to separate from simple Joule heating. Here, we study the electroplastic deformation of Ti-Al (7 at.% Al), an alloy that is uniquely suited for uncoupling this behaviour because, contrary to most metals, it has inherently lower ductility at higher temperature. We find that during mechanical deformation, electropulsing enhances cross-slip, producing a wavy dislocation morphology, and enhances twinning, which is similar to what occurs during cryogenic deformation. As a consequence, dislocations are prevented from localizing into planar slip bands that would lead to the early failure of the alloy under tension. Our results demonstrate that this macroscopic electroplastic behaviour originates from defect-level microstructural reconfiguration that cannot be rationalized by simple Joule heating.
It has been known for decades that the application of pulsed direct current can significantly enhance the formability of metals. However, the detailed mechanisms of this effect have been difficult to separate from simple Joule heating. Here, we study the electroplastic deformation of Ti-Al (7 at.% Al), an alloy that is uniquely suited for uncoupling this behaviour because, contrary to most metals, it has inherently lower ductility at higher temperature. We find that during mechanical deformation, electropulsing enhances cross-slip, producing a wavy dislocation morphology, and enhances twinning, which is similar to what occurs during cryogenic deformation. As a consequence, dislocations are prevented from localizing into planar slip bands that would lead to the early failure of the alloy under tension. Our results demonstrate that this macroscopic electroplastic behaviour originates from defect-level microstructural reconfiguration that cannot be rationalized by simple Joule heating.
It has been known for decades that the application of pulsed direct current can significantly enhance the formability of metals. However, the detailed mechanisms of this effect have been difficult to separate from simple Joule heating. Here, we study the electroplastic deformation of Ti–Al (7 at.% Al), an alloy that is uniquely suited for uncoupling this behaviour because, contrary to most metals, it has inherently lower ductility at higher temperature. We find that during mechanical deformation, electropulsing enhances cross-slip, producing a wavy dislocation morphology, and enhances twinning, which is similar to what occurs during cryogenic deformation. As a consequence, dislocations are prevented from localizing into planar slip bands that would lead to the early failure of the alloy under tension. Our results demonstrate that this macroscopic electroplastic behaviour originates from defect-level microstructural reconfiguration that cannot be rationalized by simple Joule heating. Transmission electron microscopy reveals the electroplastic effects in a Ti–Al alloy, which can be uncoupled from Joule heating effects. Electropulsing during deformation enhances wavy slip of dislocations, reconfiguring the dislocation pattern, and hence increases the ductility.
Author Zhao, Shiteng
Li, Xiaoqing
Asta, Mark
Chrzan, Daryl C.
Zhang, Ruopeng
Minor, Andrew M.
Rothchild, Eric
Morris, J. W.
Chong, Yan
Abu-Odeh, Anas
Author_xml – sequence: 1
  givenname: Shiteng
  surname: Zhao
  fullname: Zhao, Shiteng
  organization: Department of Materials Science and Engineering, University of California, National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory
– sequence: 2
  givenname: Ruopeng
  orcidid: 0000-0001-7677-4051
  surname: Zhang
  fullname: Zhang, Ruopeng
  organization: Department of Materials Science and Engineering, University of California, National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory
– sequence: 3
  givenname: Yan
  surname: Chong
  fullname: Chong, Yan
  organization: Department of Materials Science and Engineering, University of California, National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory
– sequence: 4
  givenname: Xiaoqing
  surname: Li
  fullname: Li, Xiaoqing
  organization: Department of Materials Science and Engineering, University of California, National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory
– sequence: 5
  givenname: Anas
  surname: Abu-Odeh
  fullname: Abu-Odeh, Anas
  organization: Department of Materials Science and Engineering, University of California
– sequence: 6
  givenname: Eric
  surname: Rothchild
  fullname: Rothchild, Eric
  organization: Department of Materials Science and Engineering, University of California
– sequence: 7
  givenname: Daryl C.
  surname: Chrzan
  fullname: Chrzan, Daryl C.
  organization: Department of Materials Science and Engineering, University of California, Materials Science Division, Lawrence Berkeley National Laboratory
– sequence: 8
  givenname: Mark
  orcidid: 0000-0002-8968-321X
  surname: Asta
  fullname: Asta, Mark
  organization: Department of Materials Science and Engineering, University of California, Materials Science Division, Lawrence Berkeley National Laboratory
– sequence: 9
  givenname: J. W.
  orcidid: 0000-0002-3300-8880
  surname: Morris
  fullname: Morris, J. W.
  organization: Department of Materials Science and Engineering, University of California
– sequence: 10
  givenname: Andrew M.
  orcidid: 0000-0003-3606-8309
  surname: Minor
  fullname: Minor, Andrew M.
  email: aminor@berkeley.edu
  organization: Department of Materials Science and Engineering, University of California, National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33020612$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtKAzEUQINU1Ko_4EIG3LgZzWsy6UrENxTc1HVI0qRE0klNZoS68h_8Q7_E9KFCF13dLM7JvZw-6DWhMQCcIHiBIOGXiaKKkRJiWELIUV1-7IADRGtWUsZgb_1GCON90E_pFUKMqortgX1CssQQPgBXt8Ya3RbR6NBYN-mibF1oCtcUshi578-va19I78O8eHeyMD7DMcy8TK3Trp0fgV0rfTLH63kIXu7vRjeP5fD54enmelhqSlFbcjXmtaoH1YBDYyFnBimLFdOUaQUVlgwrSbRCskacMSuhJZYPuJGSMM0kOQTnq39nMbx1JrVi6pI23svGhC4JTCnnFA94ndGzDfQ1dLHJ1wlcwaqqCacL6nRNdWpqxmIW3VTGufhNkwG8AnQMKUVj_xAExaK_WPUXmRfL_uIjS3xDypGWRdsond-ukpWa8p5mYuL_2VusH45gmjE
CitedBy_id crossref_primary_10_1016_j_msea_2023_145534
crossref_primary_10_1016_j_jmrt_2022_05_188
crossref_primary_10_1007_s11661_024_07522_5
crossref_primary_10_1016_j_jmapro_2025_02_076
crossref_primary_10_3390_met11121917
crossref_primary_10_1016_j_msea_2022_143519
crossref_primary_10_1016_S1003_6326_22_65967_3
crossref_primary_10_2139_ssrn_3985409
crossref_primary_10_1080_21663831_2023_2169082
crossref_primary_10_1016_j_msea_2022_144176
crossref_primary_10_1002_srin_202400400
crossref_primary_10_1007_s10853_023_09026_w
crossref_primary_10_1016_j_matchar_2024_113950
crossref_primary_10_2139_ssrn_4067195
crossref_primary_10_1016_j_jallcom_2022_165021
crossref_primary_10_1007_s00170_023_11841_z
crossref_primary_10_3390_met13050944
crossref_primary_10_1007_s00707_024_04203_7
crossref_primary_10_1002_adem_202300115
crossref_primary_10_1016_j_ijplas_2022_103397
crossref_primary_10_1016_j_jmrt_2022_07_100
crossref_primary_10_1016_j_actamat_2022_118550
crossref_primary_10_1016_j_msea_2023_144686
crossref_primary_10_1016_j_jmst_2021_03_060
crossref_primary_10_1103_PhysRevMaterials_7_103603
crossref_primary_10_1016_j_jmst_2023_06_029
crossref_primary_10_1016_j_jmst_2021_06_067
crossref_primary_10_1002_adem_202200425
crossref_primary_10_1038_s41598_023_50698_w
crossref_primary_10_1007_s12540_024_01778_7
crossref_primary_10_1016_j_apsusc_2025_162334
crossref_primary_10_1016_j_cej_2022_134672
crossref_primary_10_1134_S1052618824700080
crossref_primary_10_1007_s11837_024_06697_x
crossref_primary_10_1016_j_jallcom_2024_177144
crossref_primary_10_1016_j_jmapro_2023_05_071
crossref_primary_10_1007_s12540_023_01558_9
crossref_primary_10_1016_j_jallcom_2023_169463
crossref_primary_10_1080_21663831_2024_2352052
crossref_primary_10_1016_j_actamat_2022_118411
crossref_primary_10_1016_j_jmst_2024_03_020
crossref_primary_10_26896_1028_6861_2023_89_8_62_66
crossref_primary_10_1016_j_jmst_2022_11_031
crossref_primary_10_1016_j_msea_2024_146823
crossref_primary_10_1016_j_scriptamat_2022_114997
crossref_primary_10_1016_j_matchar_2022_111736
crossref_primary_10_1016_j_matlet_2021_130049
crossref_primary_10_1016_j_jmst_2024_04_008
crossref_primary_10_1088_1742_6596_2457_1_012007
crossref_primary_10_1016_j_vacuum_2023_112937
crossref_primary_10_1134_S0020168523150050
crossref_primary_10_1016_j_msea_2024_146716
crossref_primary_10_31857_S0235711923040168
crossref_primary_10_1007_s12598_024_02842_2
crossref_primary_10_1016_j_mtadv_2024_100530
crossref_primary_10_1021_acsomega_2c02027
crossref_primary_10_1016_j_matlet_2022_133703
crossref_primary_10_1016_j_jmapro_2024_12_051
crossref_primary_10_1016_j_surfin_2024_104781
crossref_primary_10_1186_s10033_023_00961_y
crossref_primary_10_1007_s43452_024_01057_7
crossref_primary_10_1016_j_msea_2023_145435
crossref_primary_10_1038_s41467_022_34333_2
crossref_primary_10_3390_ma14133739
crossref_primary_10_3390_ma18010182
crossref_primary_10_1007_s11661_024_07335_6
crossref_primary_10_3390_ma16041589
crossref_primary_10_1016_j_jmatprotec_2023_117884
crossref_primary_10_1016_j_jmapro_2024_09_035
crossref_primary_10_1007_s12540_021_01130_3
crossref_primary_10_1002_adem_202101623
crossref_primary_10_1016_j_mechmat_2023_104878
crossref_primary_10_1016_j_jmrt_2023_09_184
crossref_primary_10_1016_j_commatsci_2023_112567
crossref_primary_10_1016_j_msea_2022_142899
crossref_primary_10_1016_j_msea_2022_143747
crossref_primary_10_1088_1361_6463_ad1469
crossref_primary_10_1016_j_matchar_2023_113072
crossref_primary_10_1016_j_jallcom_2023_170917
crossref_primary_10_1016_j_actamat_2022_117925
crossref_primary_10_1016_j_mtcomm_2022_103350
crossref_primary_10_1016_j_jmrt_2024_09_238
crossref_primary_10_1016_j_jmapro_2024_10_004
crossref_primary_10_1016_j_jmrt_2024_01_030
crossref_primary_10_1007_s10853_023_08792_x
crossref_primary_10_1016_j_carbon_2022_10_070
crossref_primary_10_1016_j_corsci_2024_112010
crossref_primary_10_1016_j_matchar_2022_112110
crossref_primary_10_1016_j_jallcom_2021_162789
crossref_primary_10_3390_met13081396
crossref_primary_10_1007_s11661_023_07064_2
crossref_primary_10_1016_j_mtadv_2023_100442
crossref_primary_10_1002_adem_202401100
crossref_primary_10_1016_j_vacuum_2024_113424
crossref_primary_10_1016_j_jmst_2022_05_008
crossref_primary_10_1016_j_jmapro_2024_12_002
crossref_primary_10_1016_j_mtcomm_2024_110305
crossref_primary_10_1016_j_msea_2023_145146
crossref_primary_10_1080_21663831_2024_2343950
crossref_primary_10_1016_j_vacuum_2021_110558
crossref_primary_10_1007_s00170_021_08025_y
crossref_primary_10_1016_j_msea_2022_143805
crossref_primary_10_2139_ssrn_4102469
crossref_primary_10_1016_j_jmrt_2024_01_213
crossref_primary_10_1016_j_msea_2024_147293
crossref_primary_10_1016_j_ijmecsci_2022_107433
crossref_primary_10_1016_j_jmrt_2024_02_125
crossref_primary_10_1088_1361_648X_ad8ab8
crossref_primary_10_3103_S1052618823040167
crossref_primary_10_1016_j_msea_2023_145238
crossref_primary_10_22226_2410_3535_2022_4_292_297
crossref_primary_10_1051_e3sconf_202346010002
crossref_primary_10_1016_j_ijplas_2023_103826
crossref_primary_10_1038_s41563_023_01572_7
crossref_primary_10_1016_j_ijplas_2023_103828
crossref_primary_10_26896_1028_6861_2022_88_10_73_82
crossref_primary_10_1007_s00170_023_11291_7
crossref_primary_10_1016_j_jmapro_2024_03_092
crossref_primary_10_2139_ssrn_4141008
crossref_primary_10_1002_adem_202401325
crossref_primary_10_1007_s41230_024_3158_y
crossref_primary_10_1016_j_ijplas_2023_103820
crossref_primary_10_3390_met11050813
crossref_primary_10_2139_ssrn_4149412
crossref_primary_10_1007_s11837_022_05538_z
crossref_primary_10_1016_j_msea_2022_142975
crossref_primary_10_1016_j_msea_2023_144815
crossref_primary_10_1016_j_ijmecsci_2024_109426
crossref_primary_10_1016_j_engfailanal_2024_108120
crossref_primary_10_1016_j_jallcom_2023_171801
crossref_primary_10_1016_j_jmrt_2025_03_002
crossref_primary_10_1016_j_commatsci_2025_113818
crossref_primary_10_1016_j_msea_2024_147394
crossref_primary_10_1016_j_jmrt_2025_01_011
crossref_primary_10_1016_j_jallcom_2024_176322
crossref_primary_10_1038_s41467_021_26374_w
crossref_primary_10_1016_j_cja_2023_12_007
crossref_primary_10_1016_j_matchar_2024_113689
crossref_primary_10_1016_j_msea_2024_146865
crossref_primary_10_1016_j_ceramint_2023_03_133
crossref_primary_10_1038_s41467_024_50351_8
crossref_primary_10_1016_j_matdes_2025_113836
crossref_primary_10_1038_s41563_021_00964_x
crossref_primary_10_1080_02670844_2022_2154033
crossref_primary_10_1177_02670836251314968
crossref_primary_10_1142_S2737549824500017
crossref_primary_10_1088_1361_651X_ad7d25
crossref_primary_10_1038_s41563_023_01614_0
crossref_primary_10_2139_ssrn_4188678
crossref_primary_10_3390_ma16186270
crossref_primary_10_1016_j_msea_2023_145188
crossref_primary_10_1016_j_msea_2023_145064
crossref_primary_10_1016_j_ijmecsci_2023_108693
crossref_primary_10_1016_j_msea_2023_145966
crossref_primary_10_1016_j_jallcom_2021_163425
crossref_primary_10_1016_j_jmrt_2023_05_258
crossref_primary_10_1007_s11661_023_07114_9
crossref_primary_10_1557_s43578_021_00123_7
crossref_primary_10_2139_ssrn_4196986
crossref_primary_10_1007_s11665_022_06921_2
crossref_primary_10_1016_j_surfcoat_2022_128957
crossref_primary_10_1103_PhysRevMaterials_5_113605
crossref_primary_10_1016_j_surfcoat_2022_128959
crossref_primary_10_1016_j_jmrt_2023_12_281
crossref_primary_10_1016_j_mtcomm_2024_108427
crossref_primary_10_1016_j_matchar_2022_112410
crossref_primary_10_1016_j_mtcomm_2022_105274
crossref_primary_10_1016_j_msea_2023_144884
crossref_primary_10_1016_j_scriptamat_2024_116031
crossref_primary_10_1016_j_jmst_2024_03_059
crossref_primary_10_1016_j_msea_2022_144545
crossref_primary_10_1016_j_matdes_2022_110902
crossref_primary_10_1016_j_jmst_2024_06_022
crossref_primary_10_1016_j_scriptamat_2022_114933
crossref_primary_10_1134_S1052618824701127
crossref_primary_10_1016_j_jmrt_2023_02_156
crossref_primary_10_1016_j_cossms_2024_101190
crossref_primary_10_2139_ssrn_4194449
crossref_primary_10_1016_j_ijmachtools_2022_103871
crossref_primary_10_1016_j_jallcom_2025_179132
crossref_primary_10_1088_2053_1591_ad35a9
crossref_primary_10_1016_j_msea_2023_145149
crossref_primary_10_1016_j_msea_2025_147804
crossref_primary_10_1007_s11661_023_07094_w
crossref_primary_10_3390_app13052772
crossref_primary_10_1016_j_jmst_2023_12_068
crossref_primary_10_1016_j_wear_2024_205559
crossref_primary_10_1016_j_jallcom_2022_166412
crossref_primary_10_1007_s00170_023_12072_y
crossref_primary_10_1016_j_optlastec_2024_111700
crossref_primary_10_1016_j_mtcomm_2022_104969
crossref_primary_10_1007_s11665_023_08522_z
crossref_primary_10_1007_s11665_021_06382_z
crossref_primary_10_1016_j_physleta_2024_130133
crossref_primary_10_1016_j_actamat_2022_118612
crossref_primary_10_1016_j_msea_2025_148229
crossref_primary_10_1016_j_jmst_2021_03_081
crossref_primary_10_1016_j_actamat_2021_117461
crossref_primary_10_1016_j_intermet_2024_108214
Cites_doi 10.3390/ma12010111
10.1016/j.jmst.2018.09.069
10.1016/S1359-6454(01)00300-7
10.1007/BF01534611
10.1179/1743284714Y.0000000746
10.1016/0036-9748(73)90104-X
10.1007/BF03221075
10.1016/j.scriptamat.2017.09.032
10.1557/jmr.2016.90
10.1016/S1359-6454(99)00426-7
10.1016/S0921-5093(00)00786-3
10.1016/j.matdes.2019.108153
10.1007/BF02067644
10.1016/0011-2275(80)90154-X
10.1007/s11661-002-0139-9
10.1016/0001-6160(86)90001-5
10.1016/j.actamat.2009.06.044
10.1016/j.actamat.2015.09.048
10.1080/01418610208243202
10.1016/0025-5416(80)90216-5
10.1016/S0921-5093(00)00782-6
10.1007/s11661-017-4024-y
10.1016/j.matdes.2012.06.060
10.3390/ma11020185
10.1080/095008396181055
10.1126/sciadv.aax2799
10.1016/j.msea.2019.138026
10.1007/s11661-002-0153-y
ContentType Journal Article
Copyright This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020
This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020.
Copyright_xml – notice: This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020
– notice: This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020.
DBID AAYXX
CITATION
NPM
3V.
7SR
7X7
7XB
88E
88I
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
L6V
M0S
M1P
M2P
M7S
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
DOI 10.1038/s41563-020-00817-z
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Engineered Materials Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Materials Science Database
ProQuest Engineering Collection
Health & Medical Collection (Alumni)
Medical Database
Science Database
ProQuest Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Engineered Materials Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1476-4660
EndPage 472
ExternalDocumentID 33020612
10_1038_s41563_020_00817_z
Genre Journal Article
GrantInformation_xml – fundername: United States Department of Defense | United States Navy | Office of Naval Research (ONR)
  grantid: N00014-17-1-2283; N00014-17-1-2283; N00014-17-1-2283; N00014-17-1-2283; N00014-17-1-2283; N00014-17-1-2283; N00014-17-1-2283; N00014-17-1-2283; N00014-17-1-2283; N00014-17-1-2283
  funderid: https://doi.org/10.13039/100000006
– fundername: United States Department of Defense | United States Navy | Office of Naval Research (ONR)
  grantid: N00014-17-1-2283
GroupedDBID ---
0R~
29M
39C
3V.
4.4
5BI
70F
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFS
ACGOD
ACIWK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
CCPQU
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
KC.
L6V
M1P
M2P
M7S
MK~
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RIG
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
NFIDA
NPM
PJZUB
PPXIY
PQGLB
7SR
7XB
8BQ
8FD
8FK
JG9
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c441t-8bd87b795980ef086e1bf2b6c46cb0b2a62ba3cb1a71866fa0f3f898eaa36c6a3
IEDL.DBID 7X7
ISSN 1476-1122
1476-4660
IngestDate Fri Jul 11 08:35:32 EDT 2025
Sat Aug 23 12:23:52 EDT 2025
Mon Jul 21 05:25:01 EDT 2025
Tue Jul 01 02:14:01 EDT 2025
Thu Apr 24 22:55:26 EDT 2025
Fri Feb 21 02:40:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-8bd87b795980ef086e1bf2b6c46cb0b2a62ba3cb1a71866fa0f3f898eaa36c6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7677-4051
0000-0002-3300-8880
0000-0002-8968-321X
0000-0003-3606-8309
PMID 33020612
PQID 2505573847
PQPubID 27576
PageCount 5
ParticipantIDs proquest_miscellaneous_2448842987
proquest_journals_2505573847
pubmed_primary_33020612
crossref_primary_10_1038_s41563_020_00817_z
crossref_citationtrail_10_1038_s41563_020_00817_z
springer_journals_10_1038_s41563_020_00817_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature materials
PublicationTitleAbbrev Nat. Mater
PublicationTitleAlternate Nat Mater
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Molotskii (CR24) 2000; 287
Sprecher, Mannan, Conrad (CR14) 1986; 34
Kravchenko (CR19) 1967; 24
Zhang (CR26) 2019; 5
van de Walle, Asta (CR33) 2002; 33
Neeraj, Holc, Daehn, Mills (CR31) 2000; 48
Jiang, Tang, Shek, Zhu, Xu (CR17) 2009; 57
Waryoba, Islam, Wang, Haque (CR8) 2019; 35
Fitzner (CR29) 2016; 103
Noell, Rodelas, Ghanbari, Laursen (CR15) 2020; 33
Neeraj, Mills (CR32) 2002; 82
Savenko (CR18) 2018; 12
Conrad (CR30) 1973; 7
Troitskii (CR3) 1977; 9
Roshchupkin, Miloshenko, Kalinin (CR22) 1979; 21
Molotskii, Fleurov (CR23) 1996; 73
Conrad (CR1) 2000; 287
Okazaki, Kagawa, Conrad (CR4) 1980; 45
Li (CR10) 2016; 31
Troitskii (CR2) 1969; 10
Andre (CR6) 2019; 183
Moskalenko, Startsev, Kovaleva (CR35) 1980; 20
Wang (CR11) 2019; 12
CR27
Roshchupkin, Bataronov (CR20) 1996; 39
CR25
Zhao (CR13) 2013; 43
Venkataraman (CR28) 2017; 48
Xiang, Zhang (CR7) 2019; 761
Sheng (CR9) 2018; 11
Lubarda, Meyers, Vo (CR34) 2001; 49
Conrad, Sprecher, Cao, Lu (CR5) 1990; 42
Klimov, Shnyrev, Novikov (CR21) 1975; 19
Islam, Wang, Haque (CR12) 2018; 144
Qin, Bhowmik (CR16) 2015; 31
H Conrad (817_CR5) 1990; 42
VY Kravchenko (817_CR19) 1967; 24
M Molotskii (817_CR23) 1996; 73
A Venkataraman (817_CR28) 2017; 48
H Conrad (817_CR1) 2000; 287
D Andre (817_CR6) 2019; 183
AF Sprecher (817_CR14) 1986; 34
K Okazaki (817_CR4) 1980; 45
S Xiang (817_CR7) 2019; 761
OA Troitskii (817_CR2) 1969; 10
PJ Noell (817_CR15) 2020; 33
AM Roshchupkin (817_CR22) 1979; 21
Y Zhao (817_CR13) 2013; 43
X Wang (817_CR11) 2019; 12
R Zhang (817_CR26) 2019; 5
A Fitzner (817_CR29) 2016; 103
T Neeraj (817_CR31) 2000; 48
VA Moskalenko (817_CR35) 1980; 20
VV Savenko (817_CR18) 2018; 12
MI Molotskii (817_CR24) 2000; 287
OA Troitskii (817_CR3) 1977; 9
T Neeraj (817_CR32) 2002; 82
A van de Walle (817_CR33) 2002; 33
RS Qin (817_CR16) 2015; 31
H Conrad (817_CR30) 1973; 7
AM Roshchupkin (817_CR20) 1996; 39
VA Lubarda (817_CR34) 2001; 49
Z Islam (817_CR12) 2018; 144
Y Sheng (817_CR9) 2018; 11
W Li (817_CR10) 2016; 31
Y Jiang (817_CR17) 2009; 57
D Waryoba (817_CR8) 2019; 35
817_CR25
K Klimov (817_CR21) 1975; 19
817_CR27
References_xml – volume: 12
  start-page: 111
  year: 2019
  ident: CR11
  article-title: Current-induced ductility enhancement of a magnesium alloy AZ31 in uniaxial micro-tension below 373 K
  publication-title: Materials
  doi: 10.3390/ma12010111
– volume: 12
  start-page: 259
  year: 2018
  end-page: 264
  ident: CR18
  article-title: Electroplastic deformation by twinning metals
  publication-title: Acta Mech. Autom.
– volume: 35
  start-page: 465
  year: 2019
  end-page: 472
  ident: CR8
  article-title: Low temperature annealing of metals with electrical wind force effects
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2018.09.069
– volume: 49
  start-page: 4025
  year: 2001
  end-page: 4039
  ident: CR34
  article-title: The onset of twinning in metals: a constitutive description
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(01)00300-7
– volume: 9
  start-page: 35
  year: 1977
  end-page: 45
  ident: CR3
  article-title: Effect of the electron state of a metal on its mechanical properties and the phenomenon of electroplasticity
  publication-title: Strength Mater.
  doi: 10.1007/BF01534611
– volume: 31
  start-page: 1560
  year: 2015
  end-page: 1563
  ident: CR16
  article-title: Computational thermodynamics in electric current metallurgy
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/1743284714Y.0000000746
– volume: 7
  start-page: 509
  year: 1973
  end-page: 512
  ident: CR30
  article-title: On the strengthening of titanium by aluminum
  publication-title: Scr. Metall.
  doi: 10.1016/0036-9748(73)90104-X
– volume: 10
  start-page: 11
  year: 1969
  ident: CR2
  article-title: Electromechanical effect in metals
  publication-title: JETP Lett.
– volume: 42
  start-page: 28
  year: 1990
  end-page: 33
  ident: CR5
  article-title: Electroplasticity—the effect of electricity on the mechanical properties of metals
  publication-title: JOM
  doi: 10.1007/BF03221075
– volume: 21
  start-page: 909
  year: 1979
  end-page: 910
  ident: CR22
  article-title: The electron retardation of dislocations in metals
  publication-title: Fiz. Tverd. Tela
– volume: 19
  start-page: 787
  year: 1975
  end-page: 788
  ident: CR21
  article-title: Electroplasticity in metals
  publication-title: J. Sov. Phys. Dokl.
– volume: 144
  start-page: 18
  year: 2018
  end-page: 21
  ident: CR12
  article-title: Current density effects on the microstructure of zirconium thin films
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2017.09.032
– volume: 31
  start-page: 1193
  year: 2016
  end-page: 1200
  ident: CR10
  article-title: Non-octahedral-like dislocation glides in aluminum induced by athermal effect of electric pulse
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2016.90
– volume: 48
  start-page: 1225
  year: 2000
  end-page: 1238
  ident: CR31
  article-title: Phenomenological and microstructural analysis of room temperature creep in titanium alloys
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(99)00426-7
– ident: CR25
– volume: 287
  start-page: 276
  year: 2000
  end-page: 287
  ident: CR1
  article-title: Electroplasticity in metals and ceramics
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(00)00786-3
– ident: CR27
– volume: 183
  start-page: 108153
  year: 2019
  ident: CR6
  article-title: Investigation of the electroplastic effect using nanoindentation
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.108153
– volume: 39
  start-page: 230
  year: 1996
  end-page: 236
  ident: CR20
  article-title: Physical basis of the electroplastic deformation of metals
  publication-title: Russ. Phys. J.
  doi: 10.1007/BF02067644
– volume: 20
  start-page: 503
  year: 1980
  end-page: 508
  ident: CR35
  article-title: Low temperature peculiarities of plastic deformation in titanium and its alloys
  publication-title: Cryogenics
  doi: 10.1016/0011-2275(80)90154-X
– volume: 33
  start-page: 735
  year: 2002
  end-page: 741
  ident: CR33
  article-title: First-principles investigation of perfect and diffuse antiphase boundaries in HCP-based Ti-Al alloys
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-002-0139-9
– volume: 34
  start-page: 1145
  year: 1986
  end-page: 1162
  ident: CR14
  article-title: Overview no. 49
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(86)90001-5
– volume: 57
  start-page: 4797
  year: 2009
  end-page: 4808
  ident: CR17
  article-title: On the thermodynamics and kinetics of electropulsing induced dissolution of β-Mg17Al12 phase in an aged Mg-9Al-1Zn
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2009.06.044
– volume: 24
  start-page: 1135
  year: 1967
  end-page: 1142
  ident: CR19
  article-title: Effect of directed electron beam on moving dislocations
  publication-title: Sov. Phys. JETP
– volume: 103
  start-page: 341
  year: 2016
  end-page: 351
  ident: CR29
  article-title: The effect of aluminium on twinning in binary alpha-titanium
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.09.048
– volume: 82
  start-page: 779
  year: 2002
  end-page: 802
  ident: CR32
  article-title: Observation and analysis of weak-fringing faults in Ti-6 wt% Al
  publication-title: Philos. Mag. A
  doi: 10.1080/01418610208243202
– volume: 45
  start-page: 109
  year: 1980
  end-page: 116
  ident: CR4
  article-title: An evaluation of the contributions of skin, pinch and heating effects to the electroplastic effect in titatnium
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/0025-5416(80)90216-5
– volume: 33
  start-page: 101128
  year: 2020
  ident: CR15
  article-title: Microstructural modification of additively manufactured metals by electropulsing
  publication-title: Addit. Manuf.
– volume: 287
  start-page: 248
  year: 2000
  end-page: 258
  ident: CR24
  article-title: Theoretical basis for electro- and magnetoplasticity
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(00)00782-6
– volume: 48
  start-page: 2222
  year: 2017
  end-page: 2236
  ident: CR28
  article-title: Study of structure and deformation pathways in Ti-7Al using atomistic simulations, experiments, and characterization
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-017-4024-y
– volume: 43
  start-page: 195
  year: 2013
  end-page: 199
  ident: CR13
  article-title: Electropulsing strengthened 2GPa boron steel with good ductility
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2012.06.060
– volume: 11
  start-page: 185
  year: 2018
  ident: CR9
  article-title: Application of high-density electropulsing to improve the performance of metallic materials: mechanisms, microstructure and properties
  publication-title: Materials
  doi: 10.3390/ma11020185
– volume: 73
  start-page: 11
  year: 1996
  end-page: 15
  ident: CR23
  article-title: Work hardening of crystals in a magnetic field
  publication-title: Philos. Mag. Lett.
  doi: 10.1080/095008396181055
– volume: 5
  start-page: eaax2799
  year: 2019
  ident: CR26
  article-title: Direct imaging of short-range order and its impact on deformation in Ti-6Al
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax2799
– volume: 761
  start-page: 138026
  year: 2019
  ident: CR7
  article-title: Dislocation structure evolution under electroplastic effect
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.138026
– volume: 12
  start-page: 259
  year: 2018
  ident: 817_CR18
  publication-title: Acta Mech. Autom.
– volume: 21
  start-page: 909
  year: 1979
  ident: 817_CR22
  publication-title: Fiz. Tverd. Tela
– volume: 39
  start-page: 230
  year: 1996
  ident: 817_CR20
  publication-title: Russ. Phys. J.
  doi: 10.1007/BF02067644
– volume: 20
  start-page: 503
  year: 1980
  ident: 817_CR35
  publication-title: Cryogenics
  doi: 10.1016/0011-2275(80)90154-X
– volume: 45
  start-page: 109
  year: 1980
  ident: 817_CR4
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/0025-5416(80)90216-5
– ident: 817_CR27
  doi: 10.1007/s11661-002-0153-y
– volume: 31
  start-page: 1560
  year: 2015
  ident: 817_CR16
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/1743284714Y.0000000746
– volume: 19
  start-page: 787
  year: 1975
  ident: 817_CR21
  publication-title: J. Sov. Phys. Dokl.
– volume: 31
  start-page: 1193
  year: 2016
  ident: 817_CR10
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2016.90
– volume: 144
  start-page: 18
  year: 2018
  ident: 817_CR12
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2017.09.032
– volume: 183
  start-page: 108153
  year: 2019
  ident: 817_CR6
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.108153
– volume: 287
  start-page: 248
  year: 2000
  ident: 817_CR24
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(00)00782-6
– volume: 73
  start-page: 11
  year: 1996
  ident: 817_CR23
  publication-title: Philos. Mag. Lett.
  doi: 10.1080/095008396181055
– volume: 43
  start-page: 195
  year: 2013
  ident: 817_CR13
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2012.06.060
– volume: 5
  start-page: eaax2799
  year: 2019
  ident: 817_CR26
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax2799
– volume: 57
  start-page: 4797
  year: 2009
  ident: 817_CR17
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2009.06.044
– volume: 35
  start-page: 465
  year: 2019
  ident: 817_CR8
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2018.09.069
– volume: 33
  start-page: 735
  year: 2002
  ident: 817_CR33
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-002-0139-9
– volume: 33
  start-page: 101128
  year: 2020
  ident: 817_CR15
  publication-title: Addit. Manuf.
– volume: 287
  start-page: 276
  year: 2000
  ident: 817_CR1
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(00)00786-3
– volume: 48
  start-page: 2222
  year: 2017
  ident: 817_CR28
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-017-4024-y
– volume: 103
  start-page: 341
  year: 2016
  ident: 817_CR29
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.09.048
– volume: 7
  start-page: 509
  year: 1973
  ident: 817_CR30
  publication-title: Scr. Metall.
  doi: 10.1016/0036-9748(73)90104-X
– volume: 42
  start-page: 28
  year: 1990
  ident: 817_CR5
  publication-title: JOM
  doi: 10.1007/BF03221075
– volume: 34
  start-page: 1145
  year: 1986
  ident: 817_CR14
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(86)90001-5
– volume: 49
  start-page: 4025
  year: 2001
  ident: 817_CR34
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(01)00300-7
– volume: 24
  start-page: 1135
  year: 1967
  ident: 817_CR19
  publication-title: Sov. Phys. JETP
– volume: 9
  start-page: 35
  year: 1977
  ident: 817_CR3
  publication-title: Strength Mater.
  doi: 10.1007/BF01534611
– volume: 82
  start-page: 779
  year: 2002
  ident: 817_CR32
  publication-title: Philos. Mag. A
  doi: 10.1080/01418610208243202
– ident: 817_CR25
– volume: 11
  start-page: 185
  year: 2018
  ident: 817_CR9
  publication-title: Materials
  doi: 10.3390/ma11020185
– volume: 761
  start-page: 138026
  year: 2019
  ident: 817_CR7
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.138026
– volume: 12
  start-page: 111
  year: 2019
  ident: 817_CR11
  publication-title: Materials
  doi: 10.3390/ma12010111
– volume: 48
  start-page: 1225
  year: 2000
  ident: 817_CR31
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(99)00426-7
– volume: 10
  start-page: 11
  year: 1969
  ident: 817_CR2
  publication-title: JETP Lett.
SSID ssj0021556
Score 2.6836512
Snippet It has been known for decades that the application of pulsed direct current can significantly enhance the formability of metals. However, the detailed...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 468
SubjectTerms 639/301/1023
639/301/1023/1026
639/301/1023/303
Aluminum base alloys
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Cross slip
Deformation
Deformation effects
Direct current
Ductility
Edge dislocations
Heating
High temperature
High temperature effects
Materials Science
Morphology
Nanotechnology
Ohmic dissipation
Optical and Electronic Materials
Reconfiguration
Resistance heating
Titanium
Twinning
Title Defect reconfiguration in a Ti–Al alloy via electroplasticity
URI https://link.springer.com/article/10.1038/s41563-020-00817-z
https://www.ncbi.nlm.nih.gov/pubmed/33020612
https://www.proquest.com/docview/2505573847
https://www.proquest.com/docview/2448842987
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fT9swED8NeIGHCca_8k9G4m2LaOLUNk-oHXRoEtU0gdS3yHZsVAml3dpOgie-A9-QT7I7x22Z0HhJIsWJrTv77ne-8x3ASemDnisTn2YSDZRcJ8qmLklbSkvJvc1DOZ_rnri6zb_3W_244TaOYZUzmRgEdTm0tEd-Sqq6JTkK0_PRr4SqRpF3NZbQWIIVSl1Gs1r2FwYX6sr6dJEUCeKKLB6aaXJ1OibDhTyYdK5aoaR-_FcxvUGbbzylQQF11-FjRI6sXbN6Az646hOsvconuAnnF46iM1iwcv3gblqzlw0qptnN4OXpuX3PyNP-wP4MNIslcEYIoCm2evKwBbfdy5uvV0mskJBYhDGTRJlSSUPlwlXTebROXGp8ZoTNhTVNk2mRGc2tSbWkxHZeNz336kw5rbmwQvNtWK6GldsFplWeaau4zr3IJeJGFIKl4sLjc1ryvAHpjDyFjenDqYrFfRHc2FwVNUkLJGkRSFo8NuDz_JtRnTzj3dYHM6oXcSGNiwXbG3A8f41LgPwaunLDKbZBExNHf6awzU7NrXl3nGMPiOIa8GXGvsXP_z-WvffHsg-rGcW2hAieA1ie_J66QwQnE3MUZiBeVffbEay0u51OD--dy96Pn38BNcXiJQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VcgAOFb8ltAUjwQlWzdqO1zmgqqKElP6cUqk3Y3ttFKnaBJK0Sk-8A-_Rh-qTdGZ_UlBFb72ttF6vNR77-8bjmQF4l8cS5_IkpjxDA0XaRPs0JGlH2ywT0cuynM_BoeofyW_HneMluGhiYehaZbMnlht1PvJ0Rr5JUN3JBG6mW-OfCVWNIu9qU0KjUou9MD9Dk23yaXcH5_c9570vg8_9pK4qkHiE_mmiXa4zRyW2dTtEZPQhdZE75aXyru24VdxZ4V1qM0oGF207iqi7OlgrlFdWYL_34L4UiOQUmd77ujDwEJuraKZMJchjeB2k0xZ6c0KGEnlMKY5bIzKc_wuEN9jtDc9sCXi9x7BSM1W2XanWE1gKxVN49Ff-wmewtRPoNggrreo4_DGr1IkNC2bZYHj5-8_2CSPP_pydDi2rS-6MkbDTXe7p_Dkc3YnsXsByMSrCS2BWS269FlZGJTPkqbjp5lqoiM9pLmQL0kY8xtfpyqlqxokp3eZCm0qkBkVqSpGa8xZ8WHwzrpJ13Np6vZG6qRfuxFyrWQveLl7jkiM_ii3CaIZt0KTF0Xc1tlmtZmvxOyHwD8gaW_Cxmb7rzv8_lle3j-UNPOgPDvbN_u7h3ho85Eis6Bgo7a7D8vTXLGwgMZq616U2Mvh-1-p_BVk5HGc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VVEJwqPgntICR4ASrZO2N7R5QVUijlkJUoVbqzdheG0WqNoEkrdIT78Db8Dg8CTP7k4IqeuttpfXa1ng8883OH8DLPJZ6Lk9iyhUaKJlNtE9Dkva0VUpEn5XtfD4N5e5R9uG4d7wCv5pcGAqrbGRiKajzsad_5B1S1T0lUJh2Yh0WcdAfbE2-JdRBijytTTuNikX2w-IMzbfp270-nvUrzgc7h-93k7rDQOIRBswS7XKtHLXb1t0QEd2H1EXupM-kd13HreTOCu9Sq6gwXLTdKKLe1MFaIb20Aue9AauKrKIWrL7bGR58Xpp7qKmr3CYlE0Q1vE7Z6QrdmZLZRP5TyurWqCfO_1WLl7DuJT9tqf4Gd2Ctxq1su2K0u7ASintw-69qhvdhqx8oNoSVNnYcfZ1XzMVGBbPscPT7x8_tE0Z-_gU7HVlWN-CZIHynyO7Z4gEcXQv1HkKrGBfhMTCrM269FjaLMlOIWlEE51rIiM9pLrI2pA15jK-Ll1MPjRNTOtGFNhVJDZLUlCQ15214vfxmUpXuuHL0RkN1U1_jqblguja8WL7GC0heFVuE8RzHoIGLu9_UOOZRdVrL5YTAFRBDtuFNc3wXk_9_L0-u3stzuImsbz7uDffX4RanIJsylGgDWrPv8_AUUdLMPavZkcGX674BfwBrpSHw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect+reconfiguration+in+a+Ti%E2%80%93Al+alloy+via+electroplasticity&rft.jtitle=Nature+materials&rft.au=Zhao+Shiteng&rft.au=Zhang+Ruopeng&rft.au=Chong%2C+Yan&rft.au=Li%2C+Xiaoqing&rft.date=2021-04-01&rft.pub=Nature+Publishing+Group&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=20&rft.issue=4&rft.spage=468&rft.epage=472&rft_id=info:doi/10.1038%2Fs41563-020-00817-z&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon