Defect reconfiguration in a Ti–Al alloy via electroplasticity
It has been known for decades that the application of pulsed direct current can significantly enhance the formability of metals. However, the detailed mechanisms of this effect have been difficult to separate from simple Joule heating. Here, we study the electroplastic deformation of Ti–Al (7 at.% A...
Saved in:
Published in | Nature materials Vol. 20; no. 4; pp. 468 - 472 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.04.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It has been known for decades that the application of pulsed direct current can significantly enhance the formability of metals. However, the detailed mechanisms of this effect have been difficult to separate from simple Joule heating. Here, we study the electroplastic deformation of Ti–Al (7 at.% Al), an alloy that is uniquely suited for uncoupling this behaviour because, contrary to most metals, it has inherently lower ductility at higher temperature. We find that during mechanical deformation, electropulsing enhances cross-slip, producing a wavy dislocation morphology, and enhances twinning, which is similar to what occurs during cryogenic deformation. As a consequence, dislocations are prevented from localizing into planar slip bands that would lead to the early failure of the alloy under tension. Our results demonstrate that this macroscopic electroplastic behaviour originates from defect-level microstructural reconfiguration that cannot be rationalized by simple Joule heating.
Transmission electron microscopy reveals the electroplastic effects in a Ti–Al alloy, which can be uncoupled from Joule heating effects. Electropulsing during deformation enhances wavy slip of dislocations, reconfiguring the dislocation pattern, and hence increases the ductility. |
---|---|
AbstractList | It has been known for decades that the application of pulsed direct current can significantly enhance the formability of metals. However, the detailed mechanisms of this effect have been difficult to separate from simple Joule heating. Here, we study the electroplastic deformation of Ti–Al (7 at.% Al), an alloy that is uniquely suited for uncoupling this behaviour because, contrary to most metals, it has inherently lower ductility at higher temperature. We find that during mechanical deformation, electropulsing enhances cross-slip, producing a wavy dislocation morphology, and enhances twinning, which is similar to what occurs during cryogenic deformation. As a consequence, dislocations are prevented from localizing into planar slip bands that would lead to the early failure of the alloy under tension. Our results demonstrate that this macroscopic electroplastic behaviour originates from defect-level microstructural reconfiguration that cannot be rationalized by simple Joule heating.Transmission electron microscopy reveals the electroplastic effects in a Ti–Al alloy, which can be uncoupled from Joule heating effects. Electropulsing during deformation enhances wavy slip of dislocations, reconfiguring the dislocation pattern, and hence increases the ductility. It has been known for decades that the application of pulsed direct current can significantly enhance the formability of metals. However, the detailed mechanisms of this effect have been difficult to separate from simple Joule heating. Here, we study the electroplastic deformation of Ti-Al (7 at.% Al), an alloy that is uniquely suited for uncoupling this behaviour because, contrary to most metals, it has inherently lower ductility at higher temperature. We find that during mechanical deformation, electropulsing enhances cross-slip, producing a wavy dislocation morphology, and enhances twinning, which is similar to what occurs during cryogenic deformation. As a consequence, dislocations are prevented from localizing into planar slip bands that would lead to the early failure of the alloy under tension. Our results demonstrate that this macroscopic electroplastic behaviour originates from defect-level microstructural reconfiguration that cannot be rationalized by simple Joule heating.It has been known for decades that the application of pulsed direct current can significantly enhance the formability of metals. However, the detailed mechanisms of this effect have been difficult to separate from simple Joule heating. Here, we study the electroplastic deformation of Ti-Al (7 at.% Al), an alloy that is uniquely suited for uncoupling this behaviour because, contrary to most metals, it has inherently lower ductility at higher temperature. We find that during mechanical deformation, electropulsing enhances cross-slip, producing a wavy dislocation morphology, and enhances twinning, which is similar to what occurs during cryogenic deformation. As a consequence, dislocations are prevented from localizing into planar slip bands that would lead to the early failure of the alloy under tension. Our results demonstrate that this macroscopic electroplastic behaviour originates from defect-level microstructural reconfiguration that cannot be rationalized by simple Joule heating. It has been known for decades that the application of pulsed direct current can significantly enhance the formability of metals. However, the detailed mechanisms of this effect have been difficult to separate from simple Joule heating. Here, we study the electroplastic deformation of Ti-Al (7 at.% Al), an alloy that is uniquely suited for uncoupling this behaviour because, contrary to most metals, it has inherently lower ductility at higher temperature. We find that during mechanical deformation, electropulsing enhances cross-slip, producing a wavy dislocation morphology, and enhances twinning, which is similar to what occurs during cryogenic deformation. As a consequence, dislocations are prevented from localizing into planar slip bands that would lead to the early failure of the alloy under tension. Our results demonstrate that this macroscopic electroplastic behaviour originates from defect-level microstructural reconfiguration that cannot be rationalized by simple Joule heating. It has been known for decades that the application of pulsed direct current can significantly enhance the formability of metals. However, the detailed mechanisms of this effect have been difficult to separate from simple Joule heating. Here, we study the electroplastic deformation of Ti–Al (7 at.% Al), an alloy that is uniquely suited for uncoupling this behaviour because, contrary to most metals, it has inherently lower ductility at higher temperature. We find that during mechanical deformation, electropulsing enhances cross-slip, producing a wavy dislocation morphology, and enhances twinning, which is similar to what occurs during cryogenic deformation. As a consequence, dislocations are prevented from localizing into planar slip bands that would lead to the early failure of the alloy under tension. Our results demonstrate that this macroscopic electroplastic behaviour originates from defect-level microstructural reconfiguration that cannot be rationalized by simple Joule heating. Transmission electron microscopy reveals the electroplastic effects in a Ti–Al alloy, which can be uncoupled from Joule heating effects. Electropulsing during deformation enhances wavy slip of dislocations, reconfiguring the dislocation pattern, and hence increases the ductility. |
Author | Zhao, Shiteng Li, Xiaoqing Asta, Mark Chrzan, Daryl C. Zhang, Ruopeng Minor, Andrew M. Rothchild, Eric Morris, J. W. Chong, Yan Abu-Odeh, Anas |
Author_xml | – sequence: 1 givenname: Shiteng surname: Zhao fullname: Zhao, Shiteng organization: Department of Materials Science and Engineering, University of California, National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory – sequence: 2 givenname: Ruopeng orcidid: 0000-0001-7677-4051 surname: Zhang fullname: Zhang, Ruopeng organization: Department of Materials Science and Engineering, University of California, National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory – sequence: 3 givenname: Yan surname: Chong fullname: Chong, Yan organization: Department of Materials Science and Engineering, University of California, National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory – sequence: 4 givenname: Xiaoqing surname: Li fullname: Li, Xiaoqing organization: Department of Materials Science and Engineering, University of California, National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory – sequence: 5 givenname: Anas surname: Abu-Odeh fullname: Abu-Odeh, Anas organization: Department of Materials Science and Engineering, University of California – sequence: 6 givenname: Eric surname: Rothchild fullname: Rothchild, Eric organization: Department of Materials Science and Engineering, University of California – sequence: 7 givenname: Daryl C. surname: Chrzan fullname: Chrzan, Daryl C. organization: Department of Materials Science and Engineering, University of California, Materials Science Division, Lawrence Berkeley National Laboratory – sequence: 8 givenname: Mark orcidid: 0000-0002-8968-321X surname: Asta fullname: Asta, Mark organization: Department of Materials Science and Engineering, University of California, Materials Science Division, Lawrence Berkeley National Laboratory – sequence: 9 givenname: J. W. orcidid: 0000-0002-3300-8880 surname: Morris fullname: Morris, J. W. organization: Department of Materials Science and Engineering, University of California – sequence: 10 givenname: Andrew M. orcidid: 0000-0003-3606-8309 surname: Minor fullname: Minor, Andrew M. email: aminor@berkeley.edu organization: Department of Materials Science and Engineering, University of California, National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33020612$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtKAzEUQINU1Ko_4EIG3LgZzWsy6UrENxTc1HVI0qRE0klNZoS68h_8Q7_E9KFCF13dLM7JvZw-6DWhMQCcIHiBIOGXiaKKkRJiWELIUV1-7IADRGtWUsZgb_1GCON90E_pFUKMqortgX1CssQQPgBXt8Ya3RbR6NBYN-mibF1oCtcUshi578-va19I78O8eHeyMD7DMcy8TK3Trp0fgV0rfTLH63kIXu7vRjeP5fD54enmelhqSlFbcjXmtaoH1YBDYyFnBimLFdOUaQUVlgwrSbRCskacMSuhJZYPuJGSMM0kOQTnq39nMbx1JrVi6pI23svGhC4JTCnnFA94ndGzDfQ1dLHJ1wlcwaqqCacL6nRNdWpqxmIW3VTGufhNkwG8AnQMKUVj_xAExaK_WPUXmRfL_uIjS3xDypGWRdsond-ukpWa8p5mYuL_2VusH45gmjE |
CitedBy_id | crossref_primary_10_1016_j_msea_2023_145534 crossref_primary_10_1016_j_jmrt_2022_05_188 crossref_primary_10_1007_s11661_024_07522_5 crossref_primary_10_1016_j_jmapro_2025_02_076 crossref_primary_10_3390_met11121917 crossref_primary_10_1016_j_msea_2022_143519 crossref_primary_10_1016_S1003_6326_22_65967_3 crossref_primary_10_2139_ssrn_3985409 crossref_primary_10_1080_21663831_2023_2169082 crossref_primary_10_1016_j_msea_2022_144176 crossref_primary_10_1002_srin_202400400 crossref_primary_10_1007_s10853_023_09026_w crossref_primary_10_1016_j_matchar_2024_113950 crossref_primary_10_2139_ssrn_4067195 crossref_primary_10_1016_j_jallcom_2022_165021 crossref_primary_10_1007_s00170_023_11841_z crossref_primary_10_3390_met13050944 crossref_primary_10_1007_s00707_024_04203_7 crossref_primary_10_1002_adem_202300115 crossref_primary_10_1016_j_ijplas_2022_103397 crossref_primary_10_1016_j_jmrt_2022_07_100 crossref_primary_10_1016_j_actamat_2022_118550 crossref_primary_10_1016_j_msea_2023_144686 crossref_primary_10_1016_j_jmst_2021_03_060 crossref_primary_10_1103_PhysRevMaterials_7_103603 crossref_primary_10_1016_j_jmst_2023_06_029 crossref_primary_10_1016_j_jmst_2021_06_067 crossref_primary_10_1002_adem_202200425 crossref_primary_10_1038_s41598_023_50698_w crossref_primary_10_1007_s12540_024_01778_7 crossref_primary_10_1016_j_apsusc_2025_162334 crossref_primary_10_1016_j_cej_2022_134672 crossref_primary_10_1134_S1052618824700080 crossref_primary_10_1007_s11837_024_06697_x crossref_primary_10_1016_j_jallcom_2024_177144 crossref_primary_10_1016_j_jmapro_2023_05_071 crossref_primary_10_1007_s12540_023_01558_9 crossref_primary_10_1016_j_jallcom_2023_169463 crossref_primary_10_1080_21663831_2024_2352052 crossref_primary_10_1016_j_actamat_2022_118411 crossref_primary_10_1016_j_jmst_2024_03_020 crossref_primary_10_26896_1028_6861_2023_89_8_62_66 crossref_primary_10_1016_j_jmst_2022_11_031 crossref_primary_10_1016_j_msea_2024_146823 crossref_primary_10_1016_j_scriptamat_2022_114997 crossref_primary_10_1016_j_matchar_2022_111736 crossref_primary_10_1016_j_matlet_2021_130049 crossref_primary_10_1016_j_jmst_2024_04_008 crossref_primary_10_1088_1742_6596_2457_1_012007 crossref_primary_10_1016_j_vacuum_2023_112937 crossref_primary_10_1134_S0020168523150050 crossref_primary_10_1016_j_msea_2024_146716 crossref_primary_10_31857_S0235711923040168 crossref_primary_10_1007_s12598_024_02842_2 crossref_primary_10_1016_j_mtadv_2024_100530 crossref_primary_10_1021_acsomega_2c02027 crossref_primary_10_1016_j_matlet_2022_133703 crossref_primary_10_1016_j_jmapro_2024_12_051 crossref_primary_10_1016_j_surfin_2024_104781 crossref_primary_10_1186_s10033_023_00961_y crossref_primary_10_1007_s43452_024_01057_7 crossref_primary_10_1016_j_msea_2023_145435 crossref_primary_10_1038_s41467_022_34333_2 crossref_primary_10_3390_ma14133739 crossref_primary_10_3390_ma18010182 crossref_primary_10_1007_s11661_024_07335_6 crossref_primary_10_3390_ma16041589 crossref_primary_10_1016_j_jmatprotec_2023_117884 crossref_primary_10_1016_j_jmapro_2024_09_035 crossref_primary_10_1007_s12540_021_01130_3 crossref_primary_10_1002_adem_202101623 crossref_primary_10_1016_j_mechmat_2023_104878 crossref_primary_10_1016_j_jmrt_2023_09_184 crossref_primary_10_1016_j_commatsci_2023_112567 crossref_primary_10_1016_j_msea_2022_142899 crossref_primary_10_1016_j_msea_2022_143747 crossref_primary_10_1088_1361_6463_ad1469 crossref_primary_10_1016_j_matchar_2023_113072 crossref_primary_10_1016_j_jallcom_2023_170917 crossref_primary_10_1016_j_actamat_2022_117925 crossref_primary_10_1016_j_mtcomm_2022_103350 crossref_primary_10_1016_j_jmrt_2024_09_238 crossref_primary_10_1016_j_jmapro_2024_10_004 crossref_primary_10_1016_j_jmrt_2024_01_030 crossref_primary_10_1007_s10853_023_08792_x crossref_primary_10_1016_j_carbon_2022_10_070 crossref_primary_10_1016_j_corsci_2024_112010 crossref_primary_10_1016_j_matchar_2022_112110 crossref_primary_10_1016_j_jallcom_2021_162789 crossref_primary_10_3390_met13081396 crossref_primary_10_1007_s11661_023_07064_2 crossref_primary_10_1016_j_mtadv_2023_100442 crossref_primary_10_1002_adem_202401100 crossref_primary_10_1016_j_vacuum_2024_113424 crossref_primary_10_1016_j_jmst_2022_05_008 crossref_primary_10_1016_j_jmapro_2024_12_002 crossref_primary_10_1016_j_mtcomm_2024_110305 crossref_primary_10_1016_j_msea_2023_145146 crossref_primary_10_1080_21663831_2024_2343950 crossref_primary_10_1016_j_vacuum_2021_110558 crossref_primary_10_1007_s00170_021_08025_y crossref_primary_10_1016_j_msea_2022_143805 crossref_primary_10_2139_ssrn_4102469 crossref_primary_10_1016_j_jmrt_2024_01_213 crossref_primary_10_1016_j_msea_2024_147293 crossref_primary_10_1016_j_ijmecsci_2022_107433 crossref_primary_10_1016_j_jmrt_2024_02_125 crossref_primary_10_1088_1361_648X_ad8ab8 crossref_primary_10_3103_S1052618823040167 crossref_primary_10_1016_j_msea_2023_145238 crossref_primary_10_22226_2410_3535_2022_4_292_297 crossref_primary_10_1051_e3sconf_202346010002 crossref_primary_10_1016_j_ijplas_2023_103826 crossref_primary_10_1038_s41563_023_01572_7 crossref_primary_10_1016_j_ijplas_2023_103828 crossref_primary_10_26896_1028_6861_2022_88_10_73_82 crossref_primary_10_1007_s00170_023_11291_7 crossref_primary_10_1016_j_jmapro_2024_03_092 crossref_primary_10_2139_ssrn_4141008 crossref_primary_10_1002_adem_202401325 crossref_primary_10_1007_s41230_024_3158_y crossref_primary_10_1016_j_ijplas_2023_103820 crossref_primary_10_3390_met11050813 crossref_primary_10_2139_ssrn_4149412 crossref_primary_10_1007_s11837_022_05538_z crossref_primary_10_1016_j_msea_2022_142975 crossref_primary_10_1016_j_msea_2023_144815 crossref_primary_10_1016_j_ijmecsci_2024_109426 crossref_primary_10_1016_j_engfailanal_2024_108120 crossref_primary_10_1016_j_jallcom_2023_171801 crossref_primary_10_1016_j_jmrt_2025_03_002 crossref_primary_10_1016_j_commatsci_2025_113818 crossref_primary_10_1016_j_msea_2024_147394 crossref_primary_10_1016_j_jmrt_2025_01_011 crossref_primary_10_1016_j_jallcom_2024_176322 crossref_primary_10_1038_s41467_021_26374_w crossref_primary_10_1016_j_cja_2023_12_007 crossref_primary_10_1016_j_matchar_2024_113689 crossref_primary_10_1016_j_msea_2024_146865 crossref_primary_10_1016_j_ceramint_2023_03_133 crossref_primary_10_1038_s41467_024_50351_8 crossref_primary_10_1016_j_matdes_2025_113836 crossref_primary_10_1038_s41563_021_00964_x crossref_primary_10_1080_02670844_2022_2154033 crossref_primary_10_1177_02670836251314968 crossref_primary_10_1142_S2737549824500017 crossref_primary_10_1088_1361_651X_ad7d25 crossref_primary_10_1038_s41563_023_01614_0 crossref_primary_10_2139_ssrn_4188678 crossref_primary_10_3390_ma16186270 crossref_primary_10_1016_j_msea_2023_145188 crossref_primary_10_1016_j_msea_2023_145064 crossref_primary_10_1016_j_ijmecsci_2023_108693 crossref_primary_10_1016_j_msea_2023_145966 crossref_primary_10_1016_j_jallcom_2021_163425 crossref_primary_10_1016_j_jmrt_2023_05_258 crossref_primary_10_1007_s11661_023_07114_9 crossref_primary_10_1557_s43578_021_00123_7 crossref_primary_10_2139_ssrn_4196986 crossref_primary_10_1007_s11665_022_06921_2 crossref_primary_10_1016_j_surfcoat_2022_128957 crossref_primary_10_1103_PhysRevMaterials_5_113605 crossref_primary_10_1016_j_surfcoat_2022_128959 crossref_primary_10_1016_j_jmrt_2023_12_281 crossref_primary_10_1016_j_mtcomm_2024_108427 crossref_primary_10_1016_j_matchar_2022_112410 crossref_primary_10_1016_j_mtcomm_2022_105274 crossref_primary_10_1016_j_msea_2023_144884 crossref_primary_10_1016_j_scriptamat_2024_116031 crossref_primary_10_1016_j_jmst_2024_03_059 crossref_primary_10_1016_j_msea_2022_144545 crossref_primary_10_1016_j_matdes_2022_110902 crossref_primary_10_1016_j_jmst_2024_06_022 crossref_primary_10_1016_j_scriptamat_2022_114933 crossref_primary_10_1134_S1052618824701127 crossref_primary_10_1016_j_jmrt_2023_02_156 crossref_primary_10_1016_j_cossms_2024_101190 crossref_primary_10_2139_ssrn_4194449 crossref_primary_10_1016_j_ijmachtools_2022_103871 crossref_primary_10_1016_j_jallcom_2025_179132 crossref_primary_10_1088_2053_1591_ad35a9 crossref_primary_10_1016_j_msea_2023_145149 crossref_primary_10_1016_j_msea_2025_147804 crossref_primary_10_1007_s11661_023_07094_w crossref_primary_10_3390_app13052772 crossref_primary_10_1016_j_jmst_2023_12_068 crossref_primary_10_1016_j_wear_2024_205559 crossref_primary_10_1016_j_jallcom_2022_166412 crossref_primary_10_1007_s00170_023_12072_y crossref_primary_10_1016_j_optlastec_2024_111700 crossref_primary_10_1016_j_mtcomm_2022_104969 crossref_primary_10_1007_s11665_023_08522_z crossref_primary_10_1007_s11665_021_06382_z crossref_primary_10_1016_j_physleta_2024_130133 crossref_primary_10_1016_j_actamat_2022_118612 crossref_primary_10_1016_j_msea_2025_148229 crossref_primary_10_1016_j_jmst_2021_03_081 crossref_primary_10_1016_j_actamat_2021_117461 crossref_primary_10_1016_j_intermet_2024_108214 |
Cites_doi | 10.3390/ma12010111 10.1016/j.jmst.2018.09.069 10.1016/S1359-6454(01)00300-7 10.1007/BF01534611 10.1179/1743284714Y.0000000746 10.1016/0036-9748(73)90104-X 10.1007/BF03221075 10.1016/j.scriptamat.2017.09.032 10.1557/jmr.2016.90 10.1016/S1359-6454(99)00426-7 10.1016/S0921-5093(00)00786-3 10.1016/j.matdes.2019.108153 10.1007/BF02067644 10.1016/0011-2275(80)90154-X 10.1007/s11661-002-0139-9 10.1016/0001-6160(86)90001-5 10.1016/j.actamat.2009.06.044 10.1016/j.actamat.2015.09.048 10.1080/01418610208243202 10.1016/0025-5416(80)90216-5 10.1016/S0921-5093(00)00782-6 10.1007/s11661-017-4024-y 10.1016/j.matdes.2012.06.060 10.3390/ma11020185 10.1080/095008396181055 10.1126/sciadv.aax2799 10.1016/j.msea.2019.138026 10.1007/s11661-002-0153-y |
ContentType | Journal Article |
Copyright | This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020. |
Copyright_xml | – notice: This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020 – notice: This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020. |
DBID | AAYXX CITATION NPM 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 |
DOI | 10.1038/s41563-020-00817-z |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Materials Science Database ProQuest Engineering Collection Health & Medical Collection (Alumni) Medical Database Science Database ProQuest Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1476-4660 |
EndPage | 472 |
ExternalDocumentID | 33020612 10_1038_s41563_020_00817_z |
Genre | Journal Article |
GrantInformation_xml | – fundername: United States Department of Defense | United States Navy | Office of Naval Research (ONR) grantid: N00014-17-1-2283; N00014-17-1-2283; N00014-17-1-2283; N00014-17-1-2283; N00014-17-1-2283; N00014-17-1-2283; N00014-17-1-2283; N00014-17-1-2283; N00014-17-1-2283; N00014-17-1-2283 funderid: https://doi.org/10.13039/100000006 – fundername: United States Department of Defense | United States Navy | Office of Naval Research (ONR) grantid: N00014-17-1-2283 |
GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT NFIDA NPM PJZUB PPXIY PQGLB 7SR 7XB 8BQ 8FD 8FK JG9 K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c441t-8bd87b795980ef086e1bf2b6c46cb0b2a62ba3cb1a71866fa0f3f898eaa36c6a3 |
IEDL.DBID | 7X7 |
ISSN | 1476-1122 1476-4660 |
IngestDate | Fri Jul 11 08:35:32 EDT 2025 Sat Aug 23 12:23:52 EDT 2025 Mon Jul 21 05:25:01 EDT 2025 Tue Jul 01 02:14:01 EDT 2025 Thu Apr 24 22:55:26 EDT 2025 Fri Feb 21 02:40:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-8bd87b795980ef086e1bf2b6c46cb0b2a62ba3cb1a71866fa0f3f898eaa36c6a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7677-4051 0000-0002-3300-8880 0000-0002-8968-321X 0000-0003-3606-8309 |
PMID | 33020612 |
PQID | 2505573847 |
PQPubID | 27576 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2448842987 proquest_journals_2505573847 pubmed_primary_33020612 crossref_primary_10_1038_s41563_020_00817_z crossref_citationtrail_10_1038_s41563_020_00817_z springer_journals_10_1038_s41563_020_00817_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature materials |
PublicationTitleAbbrev | Nat. Mater |
PublicationTitleAlternate | Nat Mater |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Molotskii (CR24) 2000; 287 Sprecher, Mannan, Conrad (CR14) 1986; 34 Kravchenko (CR19) 1967; 24 Zhang (CR26) 2019; 5 van de Walle, Asta (CR33) 2002; 33 Neeraj, Holc, Daehn, Mills (CR31) 2000; 48 Jiang, Tang, Shek, Zhu, Xu (CR17) 2009; 57 Waryoba, Islam, Wang, Haque (CR8) 2019; 35 Fitzner (CR29) 2016; 103 Noell, Rodelas, Ghanbari, Laursen (CR15) 2020; 33 Neeraj, Mills (CR32) 2002; 82 Savenko (CR18) 2018; 12 Conrad (CR30) 1973; 7 Troitskii (CR3) 1977; 9 Roshchupkin, Miloshenko, Kalinin (CR22) 1979; 21 Molotskii, Fleurov (CR23) 1996; 73 Conrad (CR1) 2000; 287 Okazaki, Kagawa, Conrad (CR4) 1980; 45 Li (CR10) 2016; 31 Troitskii (CR2) 1969; 10 Andre (CR6) 2019; 183 Moskalenko, Startsev, Kovaleva (CR35) 1980; 20 Wang (CR11) 2019; 12 CR27 Roshchupkin, Bataronov (CR20) 1996; 39 CR25 Zhao (CR13) 2013; 43 Venkataraman (CR28) 2017; 48 Xiang, Zhang (CR7) 2019; 761 Sheng (CR9) 2018; 11 Lubarda, Meyers, Vo (CR34) 2001; 49 Conrad, Sprecher, Cao, Lu (CR5) 1990; 42 Klimov, Shnyrev, Novikov (CR21) 1975; 19 Islam, Wang, Haque (CR12) 2018; 144 Qin, Bhowmik (CR16) 2015; 31 H Conrad (817_CR5) 1990; 42 VY Kravchenko (817_CR19) 1967; 24 M Molotskii (817_CR23) 1996; 73 A Venkataraman (817_CR28) 2017; 48 H Conrad (817_CR1) 2000; 287 D Andre (817_CR6) 2019; 183 AF Sprecher (817_CR14) 1986; 34 K Okazaki (817_CR4) 1980; 45 S Xiang (817_CR7) 2019; 761 OA Troitskii (817_CR2) 1969; 10 PJ Noell (817_CR15) 2020; 33 AM Roshchupkin (817_CR22) 1979; 21 Y Zhao (817_CR13) 2013; 43 X Wang (817_CR11) 2019; 12 R Zhang (817_CR26) 2019; 5 A Fitzner (817_CR29) 2016; 103 T Neeraj (817_CR31) 2000; 48 VA Moskalenko (817_CR35) 1980; 20 VV Savenko (817_CR18) 2018; 12 MI Molotskii (817_CR24) 2000; 287 OA Troitskii (817_CR3) 1977; 9 T Neeraj (817_CR32) 2002; 82 A van de Walle (817_CR33) 2002; 33 RS Qin (817_CR16) 2015; 31 H Conrad (817_CR30) 1973; 7 AM Roshchupkin (817_CR20) 1996; 39 VA Lubarda (817_CR34) 2001; 49 Z Islam (817_CR12) 2018; 144 Y Sheng (817_CR9) 2018; 11 W Li (817_CR10) 2016; 31 Y Jiang (817_CR17) 2009; 57 D Waryoba (817_CR8) 2019; 35 817_CR25 K Klimov (817_CR21) 1975; 19 817_CR27 |
References_xml | – volume: 12 start-page: 111 year: 2019 ident: CR11 article-title: Current-induced ductility enhancement of a magnesium alloy AZ31 in uniaxial micro-tension below 373 K publication-title: Materials doi: 10.3390/ma12010111 – volume: 12 start-page: 259 year: 2018 end-page: 264 ident: CR18 article-title: Electroplastic deformation by twinning metals publication-title: Acta Mech. Autom. – volume: 35 start-page: 465 year: 2019 end-page: 472 ident: CR8 article-title: Low temperature annealing of metals with electrical wind force effects publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2018.09.069 – volume: 49 start-page: 4025 year: 2001 end-page: 4039 ident: CR34 article-title: The onset of twinning in metals: a constitutive description publication-title: Acta Mater. doi: 10.1016/S1359-6454(01)00300-7 – volume: 9 start-page: 35 year: 1977 end-page: 45 ident: CR3 article-title: Effect of the electron state of a metal on its mechanical properties and the phenomenon of electroplasticity publication-title: Strength Mater. doi: 10.1007/BF01534611 – volume: 31 start-page: 1560 year: 2015 end-page: 1563 ident: CR16 article-title: Computational thermodynamics in electric current metallurgy publication-title: Mater. Sci. Technol. doi: 10.1179/1743284714Y.0000000746 – volume: 7 start-page: 509 year: 1973 end-page: 512 ident: CR30 article-title: On the strengthening of titanium by aluminum publication-title: Scr. Metall. doi: 10.1016/0036-9748(73)90104-X – volume: 10 start-page: 11 year: 1969 ident: CR2 article-title: Electromechanical effect in metals publication-title: JETP Lett. – volume: 42 start-page: 28 year: 1990 end-page: 33 ident: CR5 article-title: Electroplasticity—the effect of electricity on the mechanical properties of metals publication-title: JOM doi: 10.1007/BF03221075 – volume: 21 start-page: 909 year: 1979 end-page: 910 ident: CR22 article-title: The electron retardation of dislocations in metals publication-title: Fiz. Tverd. Tela – volume: 19 start-page: 787 year: 1975 end-page: 788 ident: CR21 article-title: Electroplasticity in metals publication-title: J. Sov. Phys. Dokl. – volume: 144 start-page: 18 year: 2018 end-page: 21 ident: CR12 article-title: Current density effects on the microstructure of zirconium thin films publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2017.09.032 – volume: 31 start-page: 1193 year: 2016 end-page: 1200 ident: CR10 article-title: Non-octahedral-like dislocation glides in aluminum induced by athermal effect of electric pulse publication-title: J. Mater. Res. doi: 10.1557/jmr.2016.90 – volume: 48 start-page: 1225 year: 2000 end-page: 1238 ident: CR31 article-title: Phenomenological and microstructural analysis of room temperature creep in titanium alloys publication-title: Acta Mater. doi: 10.1016/S1359-6454(99)00426-7 – ident: CR25 – volume: 287 start-page: 276 year: 2000 end-page: 287 ident: CR1 article-title: Electroplasticity in metals and ceramics publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(00)00786-3 – ident: CR27 – volume: 183 start-page: 108153 year: 2019 ident: CR6 article-title: Investigation of the electroplastic effect using nanoindentation publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.108153 – volume: 39 start-page: 230 year: 1996 end-page: 236 ident: CR20 article-title: Physical basis of the electroplastic deformation of metals publication-title: Russ. Phys. J. doi: 10.1007/BF02067644 – volume: 20 start-page: 503 year: 1980 end-page: 508 ident: CR35 article-title: Low temperature peculiarities of plastic deformation in titanium and its alloys publication-title: Cryogenics doi: 10.1016/0011-2275(80)90154-X – volume: 33 start-page: 735 year: 2002 end-page: 741 ident: CR33 article-title: First-principles investigation of perfect and diffuse antiphase boundaries in HCP-based Ti-Al alloys publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-002-0139-9 – volume: 34 start-page: 1145 year: 1986 end-page: 1162 ident: CR14 article-title: Overview no. 49 publication-title: Acta Metall. doi: 10.1016/0001-6160(86)90001-5 – volume: 57 start-page: 4797 year: 2009 end-page: 4808 ident: CR17 article-title: On the thermodynamics and kinetics of electropulsing induced dissolution of β-Mg17Al12 phase in an aged Mg-9Al-1Zn publication-title: Acta Mater. doi: 10.1016/j.actamat.2009.06.044 – volume: 24 start-page: 1135 year: 1967 end-page: 1142 ident: CR19 article-title: Effect of directed electron beam on moving dislocations publication-title: Sov. Phys. JETP – volume: 103 start-page: 341 year: 2016 end-page: 351 ident: CR29 article-title: The effect of aluminium on twinning in binary alpha-titanium publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.09.048 – volume: 82 start-page: 779 year: 2002 end-page: 802 ident: CR32 article-title: Observation and analysis of weak-fringing faults in Ti-6 wt% Al publication-title: Philos. Mag. A doi: 10.1080/01418610208243202 – volume: 45 start-page: 109 year: 1980 end-page: 116 ident: CR4 article-title: An evaluation of the contributions of skin, pinch and heating effects to the electroplastic effect in titatnium publication-title: Mater. Sci. Eng. doi: 10.1016/0025-5416(80)90216-5 – volume: 33 start-page: 101128 year: 2020 ident: CR15 article-title: Microstructural modification of additively manufactured metals by electropulsing publication-title: Addit. Manuf. – volume: 287 start-page: 248 year: 2000 end-page: 258 ident: CR24 article-title: Theoretical basis for electro- and magnetoplasticity publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(00)00782-6 – volume: 48 start-page: 2222 year: 2017 end-page: 2236 ident: CR28 article-title: Study of structure and deformation pathways in Ti-7Al using atomistic simulations, experiments, and characterization publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-017-4024-y – volume: 43 start-page: 195 year: 2013 end-page: 199 ident: CR13 article-title: Electropulsing strengthened 2GPa boron steel with good ductility publication-title: Mater. Des. doi: 10.1016/j.matdes.2012.06.060 – volume: 11 start-page: 185 year: 2018 ident: CR9 article-title: Application of high-density electropulsing to improve the performance of metallic materials: mechanisms, microstructure and properties publication-title: Materials doi: 10.3390/ma11020185 – volume: 73 start-page: 11 year: 1996 end-page: 15 ident: CR23 article-title: Work hardening of crystals in a magnetic field publication-title: Philos. Mag. Lett. doi: 10.1080/095008396181055 – volume: 5 start-page: eaax2799 year: 2019 ident: CR26 article-title: Direct imaging of short-range order and its impact on deformation in Ti-6Al publication-title: Sci. Adv. doi: 10.1126/sciadv.aax2799 – volume: 761 start-page: 138026 year: 2019 ident: CR7 article-title: Dislocation structure evolution under electroplastic effect publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.138026 – volume: 12 start-page: 259 year: 2018 ident: 817_CR18 publication-title: Acta Mech. Autom. – volume: 21 start-page: 909 year: 1979 ident: 817_CR22 publication-title: Fiz. Tverd. Tela – volume: 39 start-page: 230 year: 1996 ident: 817_CR20 publication-title: Russ. Phys. J. doi: 10.1007/BF02067644 – volume: 20 start-page: 503 year: 1980 ident: 817_CR35 publication-title: Cryogenics doi: 10.1016/0011-2275(80)90154-X – volume: 45 start-page: 109 year: 1980 ident: 817_CR4 publication-title: Mater. Sci. Eng. doi: 10.1016/0025-5416(80)90216-5 – ident: 817_CR27 doi: 10.1007/s11661-002-0153-y – volume: 31 start-page: 1560 year: 2015 ident: 817_CR16 publication-title: Mater. Sci. Technol. doi: 10.1179/1743284714Y.0000000746 – volume: 19 start-page: 787 year: 1975 ident: 817_CR21 publication-title: J. Sov. Phys. Dokl. – volume: 31 start-page: 1193 year: 2016 ident: 817_CR10 publication-title: J. Mater. Res. doi: 10.1557/jmr.2016.90 – volume: 144 start-page: 18 year: 2018 ident: 817_CR12 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2017.09.032 – volume: 183 start-page: 108153 year: 2019 ident: 817_CR6 publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.108153 – volume: 287 start-page: 248 year: 2000 ident: 817_CR24 publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(00)00782-6 – volume: 73 start-page: 11 year: 1996 ident: 817_CR23 publication-title: Philos. Mag. Lett. doi: 10.1080/095008396181055 – volume: 43 start-page: 195 year: 2013 ident: 817_CR13 publication-title: Mater. Des. doi: 10.1016/j.matdes.2012.06.060 – volume: 5 start-page: eaax2799 year: 2019 ident: 817_CR26 publication-title: Sci. Adv. doi: 10.1126/sciadv.aax2799 – volume: 57 start-page: 4797 year: 2009 ident: 817_CR17 publication-title: Acta Mater. doi: 10.1016/j.actamat.2009.06.044 – volume: 35 start-page: 465 year: 2019 ident: 817_CR8 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2018.09.069 – volume: 33 start-page: 735 year: 2002 ident: 817_CR33 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-002-0139-9 – volume: 33 start-page: 101128 year: 2020 ident: 817_CR15 publication-title: Addit. Manuf. – volume: 287 start-page: 276 year: 2000 ident: 817_CR1 publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(00)00786-3 – volume: 48 start-page: 2222 year: 2017 ident: 817_CR28 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-017-4024-y – volume: 103 start-page: 341 year: 2016 ident: 817_CR29 publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.09.048 – volume: 7 start-page: 509 year: 1973 ident: 817_CR30 publication-title: Scr. Metall. doi: 10.1016/0036-9748(73)90104-X – volume: 42 start-page: 28 year: 1990 ident: 817_CR5 publication-title: JOM doi: 10.1007/BF03221075 – volume: 34 start-page: 1145 year: 1986 ident: 817_CR14 publication-title: Acta Metall. doi: 10.1016/0001-6160(86)90001-5 – volume: 49 start-page: 4025 year: 2001 ident: 817_CR34 publication-title: Acta Mater. doi: 10.1016/S1359-6454(01)00300-7 – volume: 24 start-page: 1135 year: 1967 ident: 817_CR19 publication-title: Sov. Phys. JETP – volume: 9 start-page: 35 year: 1977 ident: 817_CR3 publication-title: Strength Mater. doi: 10.1007/BF01534611 – volume: 82 start-page: 779 year: 2002 ident: 817_CR32 publication-title: Philos. Mag. A doi: 10.1080/01418610208243202 – ident: 817_CR25 – volume: 11 start-page: 185 year: 2018 ident: 817_CR9 publication-title: Materials doi: 10.3390/ma11020185 – volume: 761 start-page: 138026 year: 2019 ident: 817_CR7 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.138026 – volume: 12 start-page: 111 year: 2019 ident: 817_CR11 publication-title: Materials doi: 10.3390/ma12010111 – volume: 48 start-page: 1225 year: 2000 ident: 817_CR31 publication-title: Acta Mater. doi: 10.1016/S1359-6454(99)00426-7 – volume: 10 start-page: 11 year: 1969 ident: 817_CR2 publication-title: JETP Lett. |
SSID | ssj0021556 |
Score | 2.6836512 |
Snippet | It has been known for decades that the application of pulsed direct current can significantly enhance the formability of metals. However, the detailed... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 468 |
SubjectTerms | 639/301/1023 639/301/1023/1026 639/301/1023/303 Aluminum base alloys Biomaterials Chemistry and Materials Science Condensed Matter Physics Cross slip Deformation Deformation effects Direct current Ductility Edge dislocations Heating High temperature High temperature effects Materials Science Morphology Nanotechnology Ohmic dissipation Optical and Electronic Materials Reconfiguration Resistance heating Titanium Twinning |
Title | Defect reconfiguration in a Ti–Al alloy via electroplasticity |
URI | https://link.springer.com/article/10.1038/s41563-020-00817-z https://www.ncbi.nlm.nih.gov/pubmed/33020612 https://www.proquest.com/docview/2505573847 https://www.proquest.com/docview/2448842987 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fT9swED8NeIGHCca_8k9G4m2LaOLUNk-oHXRoEtU0gdS3yHZsVAml3dpOgie-A9-QT7I7x22Z0HhJIsWJrTv77ne-8x3ASemDnisTn2YSDZRcJ8qmLklbSkvJvc1DOZ_rnri6zb_3W_244TaOYZUzmRgEdTm0tEd-Sqq6JTkK0_PRr4SqRpF3NZbQWIIVSl1Gs1r2FwYX6sr6dJEUCeKKLB6aaXJ1OibDhTyYdK5aoaR-_FcxvUGbbzylQQF11-FjRI6sXbN6Az646hOsvconuAnnF46iM1iwcv3gblqzlw0qptnN4OXpuX3PyNP-wP4MNIslcEYIoCm2evKwBbfdy5uvV0mskJBYhDGTRJlSSUPlwlXTebROXGp8ZoTNhTVNk2mRGc2tSbWkxHZeNz336kw5rbmwQvNtWK6GldsFplWeaau4zr3IJeJGFIKl4sLjc1ryvAHpjDyFjenDqYrFfRHc2FwVNUkLJGkRSFo8NuDz_JtRnTzj3dYHM6oXcSGNiwXbG3A8f41LgPwaunLDKbZBExNHf6awzU7NrXl3nGMPiOIa8GXGvsXP_z-WvffHsg-rGcW2hAieA1ie_J66QwQnE3MUZiBeVffbEay0u51OD--dy96Pn38BNcXiJQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VcgAOFb8ltAUjwQlWzdqO1zmgqqKElP6cUqk3Y3ttFKnaBJK0Sk-8A-_Rh-qTdGZ_UlBFb72ttF6vNR77-8bjmQF4l8cS5_IkpjxDA0XaRPs0JGlH2ywT0cuynM_BoeofyW_HneMluGhiYehaZbMnlht1PvJ0Rr5JUN3JBG6mW-OfCVWNIu9qU0KjUou9MD9Dk23yaXcH5_c9570vg8_9pK4qkHiE_mmiXa4zRyW2dTtEZPQhdZE75aXyru24VdxZ4V1qM0oGF207iqi7OlgrlFdWYL_34L4UiOQUmd77ujDwEJuraKZMJchjeB2k0xZ6c0KGEnlMKY5bIzKc_wuEN9jtDc9sCXi9x7BSM1W2XanWE1gKxVN49Ff-wmewtRPoNggrreo4_DGr1IkNC2bZYHj5-8_2CSPP_pydDi2rS-6MkbDTXe7p_Dkc3YnsXsByMSrCS2BWS269FlZGJTPkqbjp5lqoiM9pLmQL0kY8xtfpyqlqxokp3eZCm0qkBkVqSpGa8xZ8WHwzrpJ13Np6vZG6qRfuxFyrWQveLl7jkiM_ii3CaIZt0KTF0Xc1tlmtZmvxOyHwD8gaW_Cxmb7rzv8_lle3j-UNPOgPDvbN_u7h3ho85Eis6Bgo7a7D8vTXLGwgMZq616U2Mvh-1-p_BVk5HGc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB6VVEJwqPgntICR4ASrZO2N7R5QVUijlkJUoVbqzdheG0WqNoEkrdIT78Db8Dg8CTP7k4IqeuttpfXa1ng8883OH8DLPJZ6Lk9iyhUaKJlNtE9Dkva0VUpEn5XtfD4N5e5R9uG4d7wCv5pcGAqrbGRiKajzsad_5B1S1T0lUJh2Yh0WcdAfbE2-JdRBijytTTuNikX2w-IMzbfp270-nvUrzgc7h-93k7rDQOIRBswS7XKtHLXb1t0QEd2H1EXupM-kd13HreTOCu9Sq6gwXLTdKKLe1MFaIb20Aue9AauKrKIWrL7bGR58Xpp7qKmr3CYlE0Q1vE7Z6QrdmZLZRP5TyurWqCfO_1WLl7DuJT9tqf4Gd2Ctxq1su2K0u7ASintw-69qhvdhqx8oNoSVNnYcfZ1XzMVGBbPscPT7x8_tE0Z-_gU7HVlWN-CZIHynyO7Z4gEcXQv1HkKrGBfhMTCrM269FjaLMlOIWlEE51rIiM9pLrI2pA15jK-Ll1MPjRNTOtGFNhVJDZLUlCQ15214vfxmUpXuuHL0RkN1U1_jqblguja8WL7GC0heFVuE8RzHoIGLu9_UOOZRdVrL5YTAFRBDtuFNc3wXk_9_L0-u3stzuImsbz7uDffX4RanIJsylGgDWrPv8_AUUdLMPavZkcGX674BfwBrpSHw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect+reconfiguration+in+a+Ti%E2%80%93Al+alloy+via+electroplasticity&rft.jtitle=Nature+materials&rft.au=Zhao+Shiteng&rft.au=Zhang+Ruopeng&rft.au=Chong%2C+Yan&rft.au=Li%2C+Xiaoqing&rft.date=2021-04-01&rft.pub=Nature+Publishing+Group&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=20&rft.issue=4&rft.spage=468&rft.epage=472&rft_id=info:doi/10.1038%2Fs41563-020-00817-z&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |