Analytic Approach to Alloys Thermodynamics: Ternary Cu-Ga-Ni system

In this paper are presented the results of the calculation of thermodynamic properties in liquid state for ternary Cu-Ga-Ni alloys using the newest version of general solution model. Calculation was carried out in temperature interval 1473-2073 K, along 3 cross sections from corner of each metal, wi...

Full description

Saved in:
Bibliographic Details
Published inMaterials research (São Carlos, São Paulo, Brazil) Vol. 19; no. 5; pp. 1026 - 1032
Main Authors Gomidželović, Lidija, Kostov, Ana, Živković, Dragana, Krstić, Vesna
Format Journal Article
LanguageEnglish
Portuguese
Spanish
Published ABM, ABC, ABPol 01.10.2016
Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper are presented the results of the calculation of thermodynamic properties in liquid state for ternary Cu-Ga-Ni alloys using the newest version of general solution model. Calculation was carried out in temperature interval 1473-2073 K, along 3 cross sections from corner of each metal, with ratios between two other metals 1:3, 1:1 and 3:1. Partial and integral molar thermodynamic properties in liquid phase for the Cu-Ga-Ni ternary system are determined, presented and discussed. Calculated data is compared with data available from literature and good agreement between these two sets of data was observed. Additionally, isothermal section of phase diagram at 298 K is calculated using Thermo-Calc software and presence of eleven different phases is detected. Presented thermodynamic data for the Cu-Ga-Ni alloys could be useful for the further assessment of this system and its phase diagram as well as for completing thermodynamic description of these alloys.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1516-1439
1980-5373
1980-5373
DOI:10.1590/1980-5373-MR-2015-0238